Metamath Proof Explorer


Theorem dfxlim2v

Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses dfxlim2v.1 φ M
dfxlim2v.2 Z = M
dfxlim2v.3 φ F : Z *
Assertion dfxlim2v φ F * A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k

Proof

Step Hyp Ref Expression
1 dfxlim2v.1 φ M
2 dfxlim2v.2 Z = M
3 dfxlim2v.3 φ F : Z *
4 simplr φ F * A A F * A
5 1 adantr φ A M
6 3 adantr φ A F : Z *
7 simpr φ A A
8 5 2 6 7 xlimclim2 φ A F * A F A
9 8 adantlr φ F * A A F * A F A
10 4 9 mpbid φ F * A A F A
11 10 3mix1d φ F * A A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
12 simpr φ F * A A = −∞ A = −∞
13 simpl F * A A = −∞ F * A
14 simpr F * A A = −∞ A = −∞
15 13 14 breqtrd F * A A = −∞ F * −∞
16 15 adantll φ F * A A = −∞ F * −∞
17 nfcv _ k F
18 17 1 2 3 xlimmnf φ F * −∞ x j Z k j F k x
19 18 ad2antrr φ F * A A = −∞ F * −∞ x j Z k j F k x
20 16 19 mpbid φ F * A A = −∞ x j Z k j F k x
21 3mix2 A = −∞ x j Z k j F k x F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
22 12 20 21 syl2anc φ F * A A = −∞ F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
23 22 adantlr φ F * A ¬ A A = −∞ F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
24 simpll φ F * A ¬ A ¬ A = −∞ φ F * A
25 xlimcl F * A A *
26 25 ad3antlr φ F * A ¬ A ¬ A = −∞ A *
27 simplr φ F * A ¬ A ¬ A = −∞ ¬ A
28 neqne ¬ A = −∞ A −∞
29 28 adantl φ F * A ¬ A ¬ A = −∞ A −∞
30 26 27 29 xrnmnfpnf φ F * A ¬ A ¬ A = −∞ A = +∞
31 simpr φ F * A A = +∞ A = +∞
32 simpl F * A A = +∞ F * A
33 simpr F * A A = +∞ A = +∞
34 32 33 breqtrd F * A A = +∞ F * +∞
35 34 adantll φ F * A A = +∞ F * +∞
36 17 1 2 3 xlimpnf φ F * +∞ x j Z k j x F k
37 36 ad2antrr φ F * A A = +∞ F * +∞ x j Z k j x F k
38 35 37 mpbid φ F * A A = +∞ x j Z k j x F k
39 3mix3 A = +∞ x j Z k j x F k F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
40 31 38 39 syl2anc φ F * A A = +∞ F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
41 24 30 40 syl2anc φ F * A ¬ A ¬ A = −∞ F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
42 23 41 pm2.61dan φ F * A ¬ A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
43 11 42 pm2.61dan φ F * A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
44 1 adantr φ F A M
45 3 adantr φ F A F : Z *
46 simpr φ F A F A
47 44 2 45 46 climxlim2 φ F A F * A
48 18 biimpar φ x j Z k j F k x F * −∞
49 48 adantrl φ A = −∞ x j Z k j F k x F * −∞
50 simprl φ A = −∞ x j Z k j F k x A = −∞
51 49 50 breqtrrd φ A = −∞ x j Z k j F k x F * A
52 36 biimpar φ x j Z k j x F k F * +∞
53 52 adantrl φ A = +∞ x j Z k j x F k F * +∞
54 simprl φ A = +∞ x j Z k j x F k A = +∞
55 53 54 breqtrrd φ A = +∞ x j Z k j x F k F * A
56 47 51 55 3jaodan φ F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k F * A
57 43 56 impbida φ F * A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k