| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfxlim2v.1 |  | 
						
							| 2 |  | dfxlim2v.2 |  | 
						
							| 3 |  | dfxlim2v.3 |  | 
						
							| 4 |  | simplr |  | 
						
							| 5 | 1 | adantr |  | 
						
							| 6 | 3 | adantr |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 5 2 6 7 | xlimclim2 |  | 
						
							| 9 | 8 | adantlr |  | 
						
							| 10 | 4 9 | mpbid |  | 
						
							| 11 | 10 | 3mix1d |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 13 14 | breqtrd |  | 
						
							| 16 | 15 | adantll |  | 
						
							| 17 |  | nfcv |  | 
						
							| 18 | 17 1 2 3 | xlimmnf |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 16 19 | mpbid |  | 
						
							| 21 |  | 3mix2 |  | 
						
							| 22 | 12 20 21 | syl2anc |  | 
						
							| 23 | 22 | adantlr |  | 
						
							| 24 |  | simpll |  | 
						
							| 25 |  | xlimcl |  | 
						
							| 26 | 25 | ad3antlr |  | 
						
							| 27 |  | simplr |  | 
						
							| 28 |  | neqne |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 | 26 27 29 | xrnmnfpnf |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 |  | simpl |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 32 33 | breqtrd |  | 
						
							| 35 | 34 | adantll |  | 
						
							| 36 | 17 1 2 3 | xlimpnf |  | 
						
							| 37 | 36 | ad2antrr |  | 
						
							| 38 | 35 37 | mpbid |  | 
						
							| 39 |  | 3mix3 |  | 
						
							| 40 | 31 38 39 | syl2anc |  | 
						
							| 41 | 24 30 40 | syl2anc |  | 
						
							| 42 | 23 41 | pm2.61dan |  | 
						
							| 43 | 11 42 | pm2.61dan |  | 
						
							| 44 | 1 | adantr |  | 
						
							| 45 | 3 | adantr |  | 
						
							| 46 |  | simpr |  | 
						
							| 47 | 44 2 45 46 | climxlim2 |  | 
						
							| 48 | 18 | biimpar |  | 
						
							| 49 | 48 | adantrl |  | 
						
							| 50 |  | simprl |  | 
						
							| 51 | 49 50 | breqtrrd |  | 
						
							| 52 | 36 | biimpar |  | 
						
							| 53 | 52 | adantrl |  | 
						
							| 54 |  | simprl |  | 
						
							| 55 | 53 54 | breqtrrd |  | 
						
							| 56 | 47 51 55 | 3jaodan |  | 
						
							| 57 | 43 56 | impbida |  |