Metamath Proof Explorer


Theorem xlimpnf

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnf.k _ k F
xlimpnf.m φ M
xlimpnf.z Z = M
xlimpnf.f φ F : Z *
Assertion xlimpnf φ F * +∞ x j Z k j x F k

Proof

Step Hyp Ref Expression
1 xlimpnf.k _ k F
2 xlimpnf.m φ M
3 xlimpnf.z Z = M
4 xlimpnf.f φ F : Z *
5 2 3 4 xlimpnfv φ F * +∞ y i Z l i y F l
6 breq1 y = x y F l x F l
7 6 rexralbidv y = x i Z l i y F l i Z l i x F l
8 fveq2 i = j i = j
9 8 raleqdv i = j l i x F l l j x F l
10 nfcv _ k x
11 nfcv _ k
12 nfcv _ k l
13 1 12 nffv _ k F l
14 10 11 13 nfbr k x F l
15 nfv l x F k
16 fveq2 l = k F l = F k
17 16 breq2d l = k x F l x F k
18 14 15 17 cbvralw l j x F l k j x F k
19 9 18 bitrdi i = j l i x F l k j x F k
20 19 cbvrexvw i Z l i x F l j Z k j x F k
21 7 20 bitrdi y = x i Z l i y F l j Z k j x F k
22 21 cbvralvw y i Z l i y F l x j Z k j x F k
23 5 22 bitrdi φ F * +∞ x j Z k j x F k