Metamath Proof Explorer


Theorem xlimpnf

Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimpnf.k _kF
xlimpnf.m φM
xlimpnf.z Z=M
xlimpnf.f φF:Z*
Assertion xlimpnf φF*+∞xjZkjxFk

Proof

Step Hyp Ref Expression
1 xlimpnf.k _kF
2 xlimpnf.m φM
3 xlimpnf.z Z=M
4 xlimpnf.f φF:Z*
5 2 3 4 xlimpnfv φF*+∞yiZliyFl
6 breq1 y=xyFlxFl
7 6 rexralbidv y=xiZliyFliZlixFl
8 fveq2 i=ji=j
9 8 raleqdv i=jlixFlljxFl
10 nfcv _kx
11 nfcv _k
12 nfcv _kl
13 1 12 nffv _kFl
14 10 11 13 nfbr kxFl
15 nfv lxFk
16 fveq2 l=kFl=Fk
17 16 breq2d l=kxFlxFk
18 14 15 17 cbvralw ljxFlkjxFk
19 9 18 bitrdi i=jlixFlkjxFk
20 19 cbvrexvw iZlixFljZkjxFk
21 7 20 bitrdi y=xiZliyFljZkjxFk
22 21 cbvralvw yiZliyFlxjZkjxFk
23 5 22 bitrdi φF*+∞xjZkjxFk