Metamath Proof Explorer


Theorem dfxlim2

Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses dfxlim2.k 𝑘 𝐹
dfxlim2.m ( 𝜑𝑀 ∈ ℤ )
dfxlim2.z 𝑍 = ( ℤ𝑀 )
dfxlim2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion dfxlim2 ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfxlim2.k 𝑘 𝐹
2 dfxlim2.m ( 𝜑𝑀 ∈ ℤ )
3 dfxlim2.z 𝑍 = ( ℤ𝑀 )
4 dfxlim2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
5 2 3 4 dfxlim2v ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ) ) ) )
6 biid ( 𝐹𝐴𝐹𝐴 )
7 breq2 ( 𝑦 = 𝑥 → ( ( 𝐹𝑙 ) ≤ 𝑦 ↔ ( 𝐹𝑙 ) ≤ 𝑥 ) )
8 7 rexralbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
9 fveq2 ( 𝑖 = 𝑗 → ( ℤ𝑖 ) = ( ℤ𝑗 ) )
10 9 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ𝑗 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
11 nfcv 𝑘 𝑙
12 1 11 nffv 𝑘 ( 𝐹𝑙 )
13 nfcv 𝑘
14 nfcv 𝑘 𝑥
15 12 13 14 nfbr 𝑘 ( 𝐹𝑙 ) ≤ 𝑥
16 nfv 𝑙 ( 𝐹𝑘 ) ≤ 𝑥
17 fveq2 ( 𝑙 = 𝑘 → ( 𝐹𝑙 ) = ( 𝐹𝑘 ) )
18 17 breq1d ( 𝑙 = 𝑘 → ( ( 𝐹𝑙 ) ≤ 𝑥 ↔ ( 𝐹𝑘 ) ≤ 𝑥 ) )
19 15 16 18 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑗 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
20 10 19 bitrdi ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
21 20 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
22 8 21 bitrdi ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
23 22 cbvralvw ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 )
24 23 anbi2i ( ( 𝐴 = -∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ) ↔ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) )
25 breq1 ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹𝑙 ) ↔ 𝑥 ≤ ( 𝐹𝑙 ) ) )
26 25 rexralbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ) )
27 9 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑙 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑙 ) ) )
28 14 13 12 nfbr 𝑘 𝑥 ≤ ( 𝐹𝑙 )
29 nfv 𝑙 𝑥 ≤ ( 𝐹𝑘 )
30 17 breq2d ( 𝑙 = 𝑘 → ( 𝑥 ≤ ( 𝐹𝑙 ) ↔ 𝑥 ≤ ( 𝐹𝑘 ) ) )
31 28 29 30 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
32 27 31 bitrdi ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
33 32 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
34 26 33 bitrdi ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
35 34 cbvralvw ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) )
36 35 anbi2i ( ( 𝐴 = +∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ) ↔ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) )
37 6 24 36 3orbi123i ( ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) 𝑦 ≤ ( 𝐹𝑙 ) ) ) ↔ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) )
38 5 37 bitrdi ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝐹𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝑥 ≤ ( 𝐹𝑘 ) ) ) ) )