| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfxlim2.k | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 2 |  | dfxlim2.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | dfxlim2.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | dfxlim2.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 5 | 2 3 4 | dfxlim2v | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐹  ⇝  𝐴  ∨  ( 𝐴  =  -∞  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦 )  ∨  ( 𝐴  =  +∞  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) ) ) | 
						
							| 6 |  | biid | ⊢ ( 𝐹  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 8 | 7 | rexralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 10 | 9 | raleqdv | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑘 𝑙 | 
						
							| 12 | 1 11 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑘  ≤ | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 15 | 12 13 14 | nfbr | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑘 )  ≤  𝑥 | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 18 | 17 | breq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 19 | 15 16 18 | cbvralw | ⊢ ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 20 | 10 19 | bitrdi | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 21 | 20 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 22 | 8 21 | bitrdi | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 23 | 22 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) | 
						
							| 24 | 23 | anbi2i | ⊢ ( ( 𝐴  =  -∞  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦 )  ↔  ( 𝐴  =  -∞  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 ) ) | 
						
							| 25 |  | breq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  𝑥  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 26 | 25 | rexralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 27 | 9 | raleqdv | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 28 | 14 13 12 | nfbr | ⊢ Ⅎ 𝑘 𝑥  ≤  ( 𝐹 ‘ 𝑙 ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑙 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) | 
						
							| 30 | 17 | breq2d | ⊢ ( 𝑙  =  𝑘  →  ( 𝑥  ≤  ( 𝐹 ‘ 𝑙 )  ↔  𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 31 | 28 29 30 | cbvralw | ⊢ ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 32 | 27 31 | bitrdi | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 33 | 32 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑥  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 34 | 26 33 | bitrdi | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 35 | 34 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 36 | 35 | anbi2i | ⊢ ( ( 𝐴  =  +∞  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ↔  ( 𝐴  =  +∞  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 37 | 6 24 36 | 3orbi123i | ⊢ ( ( 𝐹  ⇝  𝐴  ∨  ( 𝐴  =  -∞  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 )  ≤  𝑦 )  ∨  ( 𝐴  =  +∞  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  ↔  ( 𝐹  ⇝  𝐴  ∨  ( 𝐴  =  -∞  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∨  ( 𝐴  =  +∞  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 38 | 5 37 | bitrdi | ⊢ ( 𝜑  →  ( 𝐹 ~~>* 𝐴  ↔  ( 𝐹  ⇝  𝐴  ∨  ( 𝐴  =  -∞  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ≤  𝑥 )  ∨  ( 𝐴  =  +∞  ∧  ∀ 𝑥  ∈  ℝ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝑥  ≤  ( 𝐹 ‘ 𝑘 ) ) ) ) ) |