Step |
Hyp |
Ref |
Expression |
1 |
|
dfxlim2.k |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
dfxlim2.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
dfxlim2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
dfxlim2.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
5 |
2 3 4
|
dfxlim2v |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) ) ) |
6 |
|
biid |
⊢ ( 𝐹 ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) |
7 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
8 |
7
|
rexralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
10 |
9
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
12 |
1 11
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 ≤ |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
15 |
12 13 14
|
nfbr |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 |
16 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 |
17 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
18 |
17
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
19 |
15 16 18
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
20 |
10 19
|
bitrdi |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
21 |
20
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
22 |
8 21
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) |
24 |
23
|
anbi2i |
⊢ ( ( 𝐴 = -∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ↔ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
25 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
26 |
25
|
rexralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
27 |
9
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
28 |
14 13 12
|
nfbr |
⊢ Ⅎ 𝑘 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) |
29 |
|
nfv |
⊢ Ⅎ 𝑙 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) |
30 |
17
|
breq2d |
⊢ ( 𝑙 = 𝑘 → ( 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
31 |
28 29 30
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
32 |
27 31
|
bitrdi |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
33 |
32
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
34 |
26 33
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
35 |
34
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
36 |
35
|
anbi2i |
⊢ ( ( 𝐴 = +∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ↔ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
37 |
6 24 36
|
3orbi123i |
⊢ ( ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) ↔ ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) |
38 |
5 37
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ~~>* 𝐴 ↔ ( 𝐹 ⇝ 𝐴 ∨ ( 𝐴 = -∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ∨ ( 𝐴 = +∞ ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |