Metamath Proof Explorer


Theorem climresd

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses climresd.1 ( 𝜑𝑀 ∈ ℤ )
climresd.2 ( 𝜑𝐹𝑉 )
Assertion climresd ( 𝜑 → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ 𝐴𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 climresd.1 ( 𝜑𝑀 ∈ ℤ )
2 climresd.2 ( 𝜑𝐹𝑉 )
3 climres ( ( 𝑀 ∈ ℤ ∧ 𝐹𝑉 ) → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ 𝐴𝐹𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( 𝐹 ↾ ( ℤ𝑀 ) ) ⇝ 𝐴𝐹𝐴 ) )