Metamath Proof Explorer
		
		
		
		Description:  A function restricted to upper integers converges iff the original
       function converges.  (Contributed by Glauco Siliprandi, 23-Apr-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | climresd.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
					
						|  |  | climresd.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
				
					|  | Assertion | climresd | ⊢  ( 𝜑  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climresd.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | climresd.2 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 3 |  | climres | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  𝐴  ↔  𝐹  ⇝  𝐴 ) ) |