Metamath Proof Explorer
Description: A function restricted to upper integers converges iff the original
function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)
|
|
Ref |
Expression |
|
Hypotheses |
climresd.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
|
|
climresd.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
|
Assertion |
climresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
climresd.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climresd.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
climres |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |