Metamath Proof Explorer


Theorem climresd

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses climresd.1 φ M
climresd.2 φ F V
Assertion climresd φ F M A F A

Proof

Step Hyp Ref Expression
1 climresd.1 φ M
2 climresd.2 φ F V
3 climres M F V F M A F A
4 1 2 3 syl2anc φ F M A F A