Metamath Proof Explorer
		
		
		
		Description:  A function restricted to upper integers converges iff the original
       function converges.  (Contributed by Glauco Siliprandi, 23-Apr-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | climresd.1 |  | 
					
						|  |  | climresd.2 |  | 
				
					|  | Assertion | climresd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climresd.1 |  | 
						
							| 2 |  | climresd.2 |  | 
						
							| 3 |  | climres |  | 
						
							| 4 | 1 2 3 | syl2anc |  |