Metamath Proof Explorer
Description: A function restricted to upper integers converges iff the original
function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)
|
|
Ref |
Expression |
|
Hypotheses |
climresd.1 |
|
|
|
climresd.2 |
|
|
Assertion |
climresd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
climresd.1 |
|
2 |
|
climresd.2 |
|
3 |
|
climres |
|
4 |
1 2 3
|
syl2anc |
|