Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climresd.1 | |- ( ph -> M e. ZZ ) |
|
climresd.2 | |- ( ph -> F e. V ) |
||
Assertion | climresd | |- ( ph -> ( ( F |` ( ZZ>= ` M ) ) ~~> A <-> F ~~> A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climresd.1 | |- ( ph -> M e. ZZ ) |
|
2 | climresd.2 | |- ( ph -> F e. V ) |
|
3 | climres | |- ( ( M e. ZZ /\ F e. V ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> A <-> F ~~> A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( ( F |` ( ZZ>= ` M ) ) ~~> A <-> F ~~> A ) ) |