| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climresdm.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
climresdm.2 |
|- ( ph -> F e. V ) |
| 3 |
|
resexg |
|- ( F e. dom ~~> -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
| 4 |
3
|
adantl |
|- ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
| 5 |
|
fvexd |
|- ( ( ph /\ F e. dom ~~> ) -> ( ~~> ` F ) e. _V ) |
| 6 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
| 7 |
6
|
biimpi |
|- ( F e. dom ~~> -> F ~~> ( ~~> ` F ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` F ) ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
| 10 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
| 11 |
9 10
|
climresd |
|- ( ( ph /\ F e. dom ~~> ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` F ) <-> F ~~> ( ~~> ` F ) ) ) |
| 12 |
8 11
|
mpbird |
|- ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` F ) ) |
| 13 |
4 5 12
|
breldmd |
|- ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F e. V ) |
| 15 |
|
fvexd |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) e. _V ) |
| 16 |
|
climdm |
|- ( ( F |` ( ZZ>= ` M ) ) e. dom ~~> <-> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
| 17 |
16
|
biimpi |
|- ( ( F |` ( ZZ>= ` M ) ) e. dom ~~> -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> M e. ZZ ) |
| 20 |
19 14
|
climresd |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) <-> F ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) ) |
| 21 |
18 20
|
mpbid |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
| 22 |
14 15 21
|
breldmd |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F e. dom ~~> ) |
| 23 |
13 22
|
impbida |
|- ( ph -> ( F e. dom ~~> <-> ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) ) |