| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climresdm.1 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | climresdm.2 |  |-  ( ph -> F e. V ) | 
						
							| 3 |  | resexg |  |-  ( F e. dom ~~> -> ( F |` ( ZZ>= ` M ) ) e. _V ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) e. _V ) | 
						
							| 5 |  | fvexd |  |-  ( ( ph /\ F e. dom ~~> ) -> ( ~~> ` F ) e. _V ) | 
						
							| 6 |  | climdm |  |-  ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) | 
						
							| 7 | 6 | biimpi |  |-  ( F e. dom ~~> -> F ~~> ( ~~> ` F ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` F ) ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) | 
						
							| 11 | 9 10 | climresd |  |-  ( ( ph /\ F e. dom ~~> ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` F ) <-> F ~~> ( ~~> ` F ) ) ) | 
						
							| 12 | 8 11 | mpbird |  |-  ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` F ) ) | 
						
							| 13 | 4 5 12 | breldmd |  |-  ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F e. V ) | 
						
							| 15 |  | fvexd |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) e. _V ) | 
						
							| 16 |  | climdm |  |-  ( ( F |` ( ZZ>= ` M ) ) e. dom ~~> <-> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 17 | 16 | biimpi |  |-  ( ( F |` ( ZZ>= ` M ) ) e. dom ~~> -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 19 | 1 | adantr |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> M e. ZZ ) | 
						
							| 20 | 19 14 | climresd |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) <-> F ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) ) | 
						
							| 21 | 18 20 | mpbid |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) | 
						
							| 22 | 14 15 21 | breldmd |  |-  ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F e. dom ~~> ) | 
						
							| 23 | 13 22 | impbida |  |-  ( ph -> ( F e. dom ~~> <-> ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) ) |