Step |
Hyp |
Ref |
Expression |
1 |
|
climresdm.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
climresdm.2 |
|- ( ph -> F e. V ) |
3 |
|
resexg |
|- ( F e. dom ~~> -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
4 |
3
|
adantl |
|- ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
5 |
|
fvexd |
|- ( ( ph /\ F e. dom ~~> ) -> ( ~~> ` F ) e. _V ) |
6 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
7 |
6
|
biimpi |
|- ( F e. dom ~~> -> F ~~> ( ~~> ` F ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` F ) ) |
9 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
10 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
11 |
9 10
|
climresd |
|- ( ( ph /\ F e. dom ~~> ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` F ) <-> F ~~> ( ~~> ` F ) ) ) |
12 |
8 11
|
mpbird |
|- ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` F ) ) |
13 |
4 5 12
|
breldmd |
|- ( ( ph /\ F e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) |
14 |
2
|
adantr |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F e. V ) |
15 |
|
fvexd |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) e. _V ) |
16 |
|
climdm |
|- ( ( F |` ( ZZ>= ` M ) ) e. dom ~~> <-> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
17 |
16
|
biimpi |
|- ( ( F |` ( ZZ>= ` M ) ) e. dom ~~> -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
19 |
1
|
adantr |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> M e. ZZ ) |
20 |
19 14
|
climresd |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) <-> F ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) ) |
21 |
18 20
|
mpbid |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F ~~> ( ~~> ` ( F |` ( ZZ>= ` M ) ) ) ) |
22 |
14 15 21
|
breldmd |
|- ( ( ph /\ ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) -> F e. dom ~~> ) |
23 |
13 22
|
impbida |
|- ( ph -> ( F e. dom ~~> <-> ( F |` ( ZZ>= ` M ) ) e. dom ~~> ) ) |