Metamath Proof Explorer


Theorem dmclimxlim

Description: A real valued sequence that converges w.r.t. the topology on the complex numbers, converges w.r.t. the topology on the extended reals (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses dmclimxlim.1
|- ( ph -> M e. ZZ )
dmclimxlim.2
|- Z = ( ZZ>= ` M )
dmclimxlim.3
|- ( ph -> F : Z --> RR )
dmclimxlim.4
|- ( ph -> F e. dom ~~> )
Assertion dmclimxlim
|- ( ph -> F e. dom ~~>* )

Proof

Step Hyp Ref Expression
1 dmclimxlim.1
 |-  ( ph -> M e. ZZ )
2 dmclimxlim.2
 |-  Z = ( ZZ>= ` M )
3 dmclimxlim.3
 |-  ( ph -> F : Z --> RR )
4 dmclimxlim.4
 |-  ( ph -> F e. dom ~~> )
5 xlimrel
 |-  Rel ~~>*
6 1 2 3 climliminf
 |-  ( ph -> ( F e. dom ~~> <-> F ~~> ( liminf ` F ) ) )
7 4 6 mpbid
 |-  ( ph -> F ~~> ( liminf ` F ) )
8 1 2 3 7 climxlim
 |-  ( ph -> F ~~>* ( liminf ` F ) )
9 releldm
 |-  ( ( Rel ~~>* /\ F ~~>* ( liminf ` F ) ) -> F e. dom ~~>* )
10 5 8 9 sylancr
 |-  ( ph -> F e. dom ~~>* )