Metamath Proof Explorer


Theorem xlimmnflimsup2

Description: A sequence of extended reals converges to -oo if and only if its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup2.m
|- ( ph -> M e. ZZ )
xlimmnflimsup2.z
|- Z = ( ZZ>= ` M )
xlimmnflimsup2.f
|- ( ph -> F : Z --> RR* )
Assertion xlimmnflimsup2
|- ( ph -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) )

Proof

Step Hyp Ref Expression
1 xlimmnflimsup2.m
 |-  ( ph -> M e. ZZ )
2 xlimmnflimsup2.z
 |-  Z = ( ZZ>= ` M )
3 xlimmnflimsup2.f
 |-  ( ph -> F : Z --> RR* )
4 1 2 3 xlimmnfv
 |-  ( ph -> ( F ~~>* -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) )
5 nfcv
 |-  F/_ j F
6 5 1 2 3 limsupmnfuz
 |-  ( ph -> ( ( limsup ` F ) = -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) )
7 4 6 bitr4d
 |-  ( ph -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) )