Description: A sequence of extended reals converges to -oo if and only if its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimmnflimsup2.m | |- ( ph -> M e. ZZ ) |
|
xlimmnflimsup2.z | |- Z = ( ZZ>= ` M ) |
||
xlimmnflimsup2.f | |- ( ph -> F : Z --> RR* ) |
||
Assertion | xlimmnflimsup2 | |- ( ph -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimmnflimsup2.m | |- ( ph -> M e. ZZ ) |
|
2 | xlimmnflimsup2.z | |- Z = ( ZZ>= ` M ) |
|
3 | xlimmnflimsup2.f | |- ( ph -> F : Z --> RR* ) |
|
4 | 1 2 3 | xlimmnfv | |- ( ph -> ( F ~~>* -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) ) |
5 | nfcv | |- F/_ j F |
|
6 | 5 1 2 3 | limsupmnfuz | |- ( ph -> ( ( limsup ` F ) = -oo <-> A. x e. RR E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) <_ x ) ) |
7 | 4 6 | bitr4d | |- ( ph -> ( F ~~>* -oo <-> ( limsup ` F ) = -oo ) ) |