Metamath Proof Explorer


Theorem xlimmnflimsup2

Description: A sequence of extended reals converges to -oo if and only if its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup2.m φM
xlimmnflimsup2.z Z=M
xlimmnflimsup2.f φF:Z*
Assertion xlimmnflimsup2 φF*−∞lim supF=−∞

Proof

Step Hyp Ref Expression
1 xlimmnflimsup2.m φM
2 xlimmnflimsup2.z Z=M
3 xlimmnflimsup2.f φF:Z*
4 1 2 3 xlimmnfv φF*−∞xkZjkFjx
5 nfcv _jF
6 5 1 2 3 limsupmnfuz φlim supF=−∞xkZjkFjx
7 4 6 bitr4d φF*−∞lim supF=−∞