Metamath Proof Explorer


Theorem xlimmnflimsup2

Description: A sequence of extended reals converges to -oo if and only if its superior limit is also -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimmnflimsup2.m ( 𝜑𝑀 ∈ ℤ )
xlimmnflimsup2.z 𝑍 = ( ℤ𝑀 )
xlimmnflimsup2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion xlimmnflimsup2 ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ( lim sup ‘ 𝐹 ) = -∞ ) )

Proof

Step Hyp Ref Expression
1 xlimmnflimsup2.m ( 𝜑𝑀 ∈ ℤ )
2 xlimmnflimsup2.z 𝑍 = ( ℤ𝑀 )
3 xlimmnflimsup2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 1 2 3 xlimmnfv ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
5 nfcv 𝑗 𝐹
6 5 1 2 3 limsupmnfuz ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
7 4 6 bitr4d ( 𝜑 → ( 𝐹 ~~>* -∞ ↔ ( lim sup ‘ 𝐹 ) = -∞ ) )