| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupmnfuz.1 |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
limsupmnfuz.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
limsupmnfuz.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
limsupmnfuz.4 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 5 |
2 3 4
|
limsupmnfuzlem |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) |
| 6 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 10 |
9
|
raleqdv |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 12 |
1 11
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑗 ≤ |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 15 |
12 13 14
|
nfbr |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 |
| 16 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 |
| 17 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 18 |
17
|
breq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 19 |
15 16 18
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 20 |
19
|
a1i |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 21 |
10 20
|
bitrd |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 22 |
21
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 23 |
22
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 24 |
8 23
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 25 |
24
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 27 |
5 26
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |