Metamath Proof Explorer


Theorem limsupmnfuz

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnfuz.1 𝑗 𝐹
limsupmnfuz.2 ( 𝜑𝑀 ∈ ℤ )
limsupmnfuz.3 𝑍 = ( ℤ𝑀 )
limsupmnfuz.4 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion limsupmnfuz ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 limsupmnfuz.1 𝑗 𝐹
2 limsupmnfuz.2 ( 𝜑𝑀 ∈ ℤ )
3 limsupmnfuz.3 𝑍 = ( ℤ𝑀 )
4 limsupmnfuz.4 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
5 2 3 4 limsupmnfuzlem ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ) )
6 breq2 ( 𝑦 = 𝑥 → ( ( 𝐹𝑙 ) ≤ 𝑦 ↔ ( 𝐹𝑙 ) ≤ 𝑥 ) )
7 6 ralbidv ( 𝑦 = 𝑥 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
8 7 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
9 fveq2 ( 𝑖 = 𝑘 → ( ℤ𝑖 ) = ( ℤ𝑘 ) )
10 9 raleqdv ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ𝑘 ) ( 𝐹𝑙 ) ≤ 𝑥 ) )
11 nfcv 𝑗 𝑙
12 1 11 nffv 𝑗 ( 𝐹𝑙 )
13 nfcv 𝑗
14 nfcv 𝑗 𝑥
15 12 13 14 nfbr 𝑗 ( 𝐹𝑙 ) ≤ 𝑥
16 nfv 𝑙 ( 𝐹𝑗 ) ≤ 𝑥
17 fveq2 ( 𝑙 = 𝑗 → ( 𝐹𝑙 ) = ( 𝐹𝑗 ) )
18 17 breq1d ( 𝑙 = 𝑗 → ( ( 𝐹𝑙 ) ≤ 𝑥 ↔ ( 𝐹𝑗 ) ≤ 𝑥 ) )
19 15 16 18 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑘 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
20 19 a1i ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ𝑘 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
21 10 20 bitrd ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
22 21 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
23 22 a1i ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
24 8 23 bitrd ( 𝑦 = 𝑥 → ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
25 24 cbvralvw ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 )
26 25 a1i ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( 𝐹𝑙 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
27 5 26 bitrd ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )