Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzmptlem.j |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
limsupequzmptlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
limsupequzmptlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
limsupequzmptlem.a |
⊢ 𝐴 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
limsupequzmptlem.b |
⊢ 𝐵 = ( ℤ≥ ‘ 𝑁 ) |
6 |
|
limsupequzmptlem.c |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
7 |
|
limsupequzmptlem.d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ 𝑊 ) |
8 |
|
limsupequzmptlem.k |
⊢ 𝐾 = if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) |
9 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) |
10 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) |
11 |
4
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝐴 |
12 |
11
|
eleq2i |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑗 ∈ 𝐴 ) |
13 |
12
|
biimpi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ 𝐴 ) |
14 |
13 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐶 ∈ 𝑉 ) |
15 |
4
|
mpteq1i |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐶 ) |
16 |
1 14 15
|
fnmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
17 |
5
|
eleq2i |
⊢ ( 𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
18 |
17
|
bicomi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑗 ∈ 𝐵 ) |
19 |
18
|
biimpi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ 𝐵 ) |
20 |
19 7
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ 𝑊 ) |
21 |
5
|
mpteq1i |
⊢ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ 𝐶 ) |
22 |
1 20 21
|
fnmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
23 |
3 2
|
ifcld |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) |
24 |
8 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
25 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
26 |
2
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
27 |
3
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
28 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
30 |
29 8
|
breqtrrdi |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
31 |
25 2 24 30
|
eluzd |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
32 |
31
|
uzssd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
11
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) = 𝐴 ) |
34 |
32 33
|
sseqtrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐴 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐴 ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
37 |
35 36
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ 𝐴 ) |
38 |
37 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
39 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) |
40 |
39
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
41 |
37 38 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
42 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
43 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
44 |
26 27 43
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
45 |
44 8
|
breqtrrdi |
⊢ ( 𝜑 → 𝑁 ≤ 𝐾 ) |
46 |
42 3 24 45
|
eluzd |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
47 |
46
|
uzssd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
48 |
5
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑁 ) = 𝐵 |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) = 𝐵 ) |
50 |
47 49
|
sseqtrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐵 ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐵 ) |
52 |
51 36
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ 𝐵 ) |
53 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) |
54 |
53
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
55 |
52 38 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
56 |
41 55
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑗 ) ) |
57 |
1 9 10 2 16 3 22 24 56
|
limsupequz |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) ) |