| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupequzmptlem.j |
⊢ Ⅎ 𝑗 𝜑 |
| 2 |
|
limsupequzmptlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
limsupequzmptlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 4 |
|
limsupequzmptlem.a |
⊢ 𝐴 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
limsupequzmptlem.b |
⊢ 𝐵 = ( ℤ≥ ‘ 𝑁 ) |
| 6 |
|
limsupequzmptlem.c |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 7 |
|
limsupequzmptlem.d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ 𝑊 ) |
| 8 |
|
limsupequzmptlem.k |
⊢ 𝐾 = if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) |
| 9 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) |
| 11 |
4
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝐴 |
| 12 |
11
|
eleq2i |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑗 ∈ 𝐴 ) |
| 13 |
12
|
biimpi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ 𝐴 ) |
| 14 |
13 6
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐶 ∈ 𝑉 ) |
| 15 |
4
|
mpteq1i |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐶 ) |
| 16 |
1 14 15
|
fnmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 17 |
5
|
eleq2i |
⊢ ( 𝑗 ∈ 𝐵 ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 18 |
17
|
bicomi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑗 ∈ 𝐵 ) |
| 19 |
18
|
biimpi |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ 𝐵 ) |
| 20 |
19 7
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐶 ∈ 𝑊 ) |
| 21 |
5
|
mpteq1i |
⊢ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ↦ 𝐶 ) |
| 22 |
1 20 21
|
fnmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 23 |
3 2
|
ifcld |
⊢ ( 𝜑 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ∈ ℤ ) |
| 24 |
8 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 25 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 26 |
2
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 27 |
3
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 28 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 30 |
29 8
|
breqtrrdi |
⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) |
| 31 |
25 2 24 30
|
eluzd |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 |
31
|
uzssd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 |
11
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) = 𝐴 ) |
| 34 |
32 33
|
sseqtrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐴 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐴 ) |
| 36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 37 |
35 36
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ 𝐴 ) |
| 38 |
37 6
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
| 39 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) |
| 40 |
39
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
| 41 |
37 38 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
| 42 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 43 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 44 |
26 27 43
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ≤ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) |
| 45 |
44 8
|
breqtrrdi |
⊢ ( 𝜑 → 𝑁 ≤ 𝐾 ) |
| 46 |
42 3 24 45
|
eluzd |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 47 |
46
|
uzssd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 48 |
5
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑁 ) = 𝐵 |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) = 𝐵 ) |
| 50 |
47 49
|
sseqtrd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐵 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐵 ) |
| 52 |
51 36
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ 𝐵 ) |
| 53 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) |
| 54 |
53
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
| 55 |
52 38 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑗 ) = 𝐶 ) |
| 56 |
41 55
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑗 ) = ( ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑗 ) ) |
| 57 |
1 9 10 2 16 3 22 24 56
|
limsupequz |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) ) |