Metamath Proof Explorer


Theorem limsupequzmptlem

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmptlem.j 𝑗 𝜑
limsupequzmptlem.m ( 𝜑𝑀 ∈ ℤ )
limsupequzmptlem.n ( 𝜑𝑁 ∈ ℤ )
limsupequzmptlem.a 𝐴 = ( ℤ𝑀 )
limsupequzmptlem.b 𝐵 = ( ℤ𝑁 )
limsupequzmptlem.c ( ( 𝜑𝑗𝐴 ) → 𝐶𝑉 )
limsupequzmptlem.d ( ( 𝜑𝑗𝐵 ) → 𝐶𝑊 )
limsupequzmptlem.k 𝐾 = if ( 𝑀𝑁 , 𝑁 , 𝑀 )
Assertion limsupequzmptlem ( 𝜑 → ( lim sup ‘ ( 𝑗𝐴𝐶 ) ) = ( lim sup ‘ ( 𝑗𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 limsupequzmptlem.j 𝑗 𝜑
2 limsupequzmptlem.m ( 𝜑𝑀 ∈ ℤ )
3 limsupequzmptlem.n ( 𝜑𝑁 ∈ ℤ )
4 limsupequzmptlem.a 𝐴 = ( ℤ𝑀 )
5 limsupequzmptlem.b 𝐵 = ( ℤ𝑁 )
6 limsupequzmptlem.c ( ( 𝜑𝑗𝐴 ) → 𝐶𝑉 )
7 limsupequzmptlem.d ( ( 𝜑𝑗𝐵 ) → 𝐶𝑊 )
8 limsupequzmptlem.k 𝐾 = if ( 𝑀𝑁 , 𝑁 , 𝑀 )
9 nfmpt1 𝑗 ( 𝑗𝐴𝐶 )
10 nfmpt1 𝑗 ( 𝑗𝐵𝐶 )
11 4 eqcomi ( ℤ𝑀 ) = 𝐴
12 11 eleq2i ( 𝑗 ∈ ( ℤ𝑀 ) ↔ 𝑗𝐴 )
13 12 biimpi ( 𝑗 ∈ ( ℤ𝑀 ) → 𝑗𝐴 )
14 13 6 sylan2 ( ( 𝜑𝑗 ∈ ( ℤ𝑀 ) ) → 𝐶𝑉 )
15 4 mpteq1i ( 𝑗𝐴𝐶 ) = ( 𝑗 ∈ ( ℤ𝑀 ) ↦ 𝐶 )
16 1 14 15 fnmptd ( 𝜑 → ( 𝑗𝐴𝐶 ) Fn ( ℤ𝑀 ) )
17 5 eleq2i ( 𝑗𝐵𝑗 ∈ ( ℤ𝑁 ) )
18 17 bicomi ( 𝑗 ∈ ( ℤ𝑁 ) ↔ 𝑗𝐵 )
19 18 biimpi ( 𝑗 ∈ ( ℤ𝑁 ) → 𝑗𝐵 )
20 19 7 sylan2 ( ( 𝜑𝑗 ∈ ( ℤ𝑁 ) ) → 𝐶𝑊 )
21 5 mpteq1i ( 𝑗𝐵𝐶 ) = ( 𝑗 ∈ ( ℤ𝑁 ) ↦ 𝐶 )
22 1 20 21 fnmptd ( 𝜑 → ( 𝑗𝐵𝐶 ) Fn ( ℤ𝑁 ) )
23 3 2 ifcld ( 𝜑 → if ( 𝑀𝑁 , 𝑁 , 𝑀 ) ∈ ℤ )
24 8 23 eqeltrid ( 𝜑𝐾 ∈ ℤ )
25 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
26 2 zred ( 𝜑𝑀 ∈ ℝ )
27 3 zred ( 𝜑𝑁 ∈ ℝ )
28 max1 ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀𝑁 , 𝑁 , 𝑀 ) )
29 26 27 28 syl2anc ( 𝜑𝑀 ≤ if ( 𝑀𝑁 , 𝑁 , 𝑀 ) )
30 29 8 breqtrrdi ( 𝜑𝑀𝐾 )
31 25 2 24 30 eluzd ( 𝜑𝐾 ∈ ( ℤ𝑀 ) )
32 31 uzssd ( 𝜑 → ( ℤ𝐾 ) ⊆ ( ℤ𝑀 ) )
33 11 a1i ( 𝜑 → ( ℤ𝑀 ) = 𝐴 )
34 32 33 sseqtrd ( 𝜑 → ( ℤ𝐾 ) ⊆ 𝐴 )
35 34 adantr ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( ℤ𝐾 ) ⊆ 𝐴 )
36 simpr ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → 𝑗 ∈ ( ℤ𝐾 ) )
37 35 36 sseldd ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → 𝑗𝐴 )
38 37 6 syldan ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → 𝐶𝑉 )
39 eqid ( 𝑗𝐴𝐶 ) = ( 𝑗𝐴𝐶 )
40 39 fvmpt2 ( ( 𝑗𝐴𝐶𝑉 ) → ( ( 𝑗𝐴𝐶 ) ‘ 𝑗 ) = 𝐶 )
41 37 38 40 syl2anc ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( ( 𝑗𝐴𝐶 ) ‘ 𝑗 ) = 𝐶 )
42 eqid ( ℤ𝑁 ) = ( ℤ𝑁 )
43 max2 ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑁 ≤ if ( 𝑀𝑁 , 𝑁 , 𝑀 ) )
44 26 27 43 syl2anc ( 𝜑𝑁 ≤ if ( 𝑀𝑁 , 𝑁 , 𝑀 ) )
45 44 8 breqtrrdi ( 𝜑𝑁𝐾 )
46 42 3 24 45 eluzd ( 𝜑𝐾 ∈ ( ℤ𝑁 ) )
47 46 uzssd ( 𝜑 → ( ℤ𝐾 ) ⊆ ( ℤ𝑁 ) )
48 5 eqcomi ( ℤ𝑁 ) = 𝐵
49 48 a1i ( 𝜑 → ( ℤ𝑁 ) = 𝐵 )
50 47 49 sseqtrd ( 𝜑 → ( ℤ𝐾 ) ⊆ 𝐵 )
51 50 adantr ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( ℤ𝐾 ) ⊆ 𝐵 )
52 51 36 sseldd ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → 𝑗𝐵 )
53 eqid ( 𝑗𝐵𝐶 ) = ( 𝑗𝐵𝐶 )
54 53 fvmpt2 ( ( 𝑗𝐵𝐶𝑉 ) → ( ( 𝑗𝐵𝐶 ) ‘ 𝑗 ) = 𝐶 )
55 52 38 54 syl2anc ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( ( 𝑗𝐵𝐶 ) ‘ 𝑗 ) = 𝐶 )
56 41 55 eqtr4d ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( ( 𝑗𝐴𝐶 ) ‘ 𝑗 ) = ( ( 𝑗𝐵𝐶 ) ‘ 𝑗 ) )
57 1 9 10 2 16 3 22 24 56 limsupequz ( 𝜑 → ( lim sup ‘ ( 𝑗𝐴𝐶 ) ) = ( lim sup ‘ ( 𝑗𝐵𝐶 ) ) )