| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupequzmptlem.j |
|
| 2 |
|
limsupequzmptlem.m |
|
| 3 |
|
limsupequzmptlem.n |
|
| 4 |
|
limsupequzmptlem.a |
|
| 5 |
|
limsupequzmptlem.b |
|
| 6 |
|
limsupequzmptlem.c |
|
| 7 |
|
limsupequzmptlem.d |
|
| 8 |
|
limsupequzmptlem.k |
|
| 9 |
|
nfmpt1 |
|
| 10 |
|
nfmpt1 |
|
| 11 |
4
|
eqcomi |
|
| 12 |
11
|
eleq2i |
|
| 13 |
12
|
biimpi |
|
| 14 |
13 6
|
sylan2 |
|
| 15 |
4
|
mpteq1i |
|
| 16 |
1 14 15
|
fnmptd |
|
| 17 |
5
|
eleq2i |
|
| 18 |
17
|
bicomi |
|
| 19 |
18
|
biimpi |
|
| 20 |
19 7
|
sylan2 |
|
| 21 |
5
|
mpteq1i |
|
| 22 |
1 20 21
|
fnmptd |
|
| 23 |
3 2
|
ifcld |
|
| 24 |
8 23
|
eqeltrid |
|
| 25 |
|
eqid |
|
| 26 |
2
|
zred |
|
| 27 |
3
|
zred |
|
| 28 |
|
max1 |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
29 8
|
breqtrrdi |
|
| 31 |
25 2 24 30
|
eluzd |
|
| 32 |
31
|
uzssd |
|
| 33 |
11
|
a1i |
|
| 34 |
32 33
|
sseqtrd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
sseldd |
|
| 38 |
37 6
|
syldan |
|
| 39 |
|
eqid |
|
| 40 |
39
|
fvmpt2 |
|
| 41 |
37 38 40
|
syl2anc |
|
| 42 |
|
eqid |
|
| 43 |
|
max2 |
|
| 44 |
26 27 43
|
syl2anc |
|
| 45 |
44 8
|
breqtrrdi |
|
| 46 |
42 3 24 45
|
eluzd |
|
| 47 |
46
|
uzssd |
|
| 48 |
5
|
eqcomi |
|
| 49 |
48
|
a1i |
|
| 50 |
47 49
|
sseqtrd |
|
| 51 |
50
|
adantr |
|
| 52 |
51 36
|
sseldd |
|
| 53 |
|
eqid |
|
| 54 |
53
|
fvmpt2 |
|
| 55 |
52 38 54
|
syl2anc |
|
| 56 |
41 55
|
eqtr4d |
|
| 57 |
1 9 10 2 16 3 22 24 56
|
limsupequz |
|