Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzmptlem.j |
|
2 |
|
limsupequzmptlem.m |
|
3 |
|
limsupequzmptlem.n |
|
4 |
|
limsupequzmptlem.a |
|
5 |
|
limsupequzmptlem.b |
|
6 |
|
limsupequzmptlem.c |
|
7 |
|
limsupequzmptlem.d |
|
8 |
|
limsupequzmptlem.k |
|
9 |
|
nfmpt1 |
|
10 |
|
nfmpt1 |
|
11 |
4
|
eqcomi |
|
12 |
11
|
eleq2i |
|
13 |
12
|
biimpi |
|
14 |
13 6
|
sylan2 |
|
15 |
4
|
mpteq1i |
|
16 |
1 14 15
|
fnmptd |
|
17 |
5
|
eleq2i |
|
18 |
17
|
bicomi |
|
19 |
18
|
biimpi |
|
20 |
19 7
|
sylan2 |
|
21 |
5
|
mpteq1i |
|
22 |
1 20 21
|
fnmptd |
|
23 |
3 2
|
ifcld |
|
24 |
8 23
|
eqeltrid |
|
25 |
|
eqid |
|
26 |
2
|
zred |
|
27 |
3
|
zred |
|
28 |
|
max1 |
|
29 |
26 27 28
|
syl2anc |
|
30 |
29 8
|
breqtrrdi |
|
31 |
25 2 24 30
|
eluzd |
|
32 |
31
|
uzssd |
|
33 |
11
|
a1i |
|
34 |
32 33
|
sseqtrd |
|
35 |
34
|
adantr |
|
36 |
|
simpr |
|
37 |
35 36
|
sseldd |
|
38 |
37 6
|
syldan |
|
39 |
|
eqid |
|
40 |
39
|
fvmpt2 |
|
41 |
37 38 40
|
syl2anc |
|
42 |
|
eqid |
|
43 |
|
max2 |
|
44 |
26 27 43
|
syl2anc |
|
45 |
44 8
|
breqtrrdi |
|
46 |
42 3 24 45
|
eluzd |
|
47 |
46
|
uzssd |
|
48 |
5
|
eqcomi |
|
49 |
48
|
a1i |
|
50 |
47 49
|
sseqtrd |
|
51 |
50
|
adantr |
|
52 |
51 36
|
sseldd |
|
53 |
|
eqid |
|
54 |
53
|
fvmpt2 |
|
55 |
52 38 54
|
syl2anc |
|
56 |
41 55
|
eqtr4d |
|
57 |
1 9 10 2 16 3 22 24 56
|
limsupequz |
|