Metamath Proof Explorer


Theorem eluzd

Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eluzd.1 Z=M
eluzd.2 φM
eluzd.3 φN
eluzd.4 φMN
Assertion eluzd φNZ

Proof

Step Hyp Ref Expression
1 eluzd.1 Z=M
2 eluzd.2 φM
3 eluzd.3 φN
4 eluzd.4 φMN
5 eluz2 NMMNMN
6 2 3 4 5 syl3anbrc φNM
7 6 1 eleqtrrdi φNZ