Metamath Proof Explorer


Theorem eluzd

Description: Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eluzd.1 Z = M
eluzd.2 φ M
eluzd.3 φ N
eluzd.4 φ M N
Assertion eluzd φ N Z

Proof

Step Hyp Ref Expression
1 eluzd.1 Z = M
2 eluzd.2 φ M
3 eluzd.3 φ N
4 eluzd.4 φ M N
5 eluz2 N M M N M N
6 2 3 4 5 syl3anbrc φ N M
7 6 1 eleqtrrdi φ N Z