Metamath Proof Explorer


Theorem limsupequz

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequz.1 kφ
limsupequz.2 _kF
limsupequz.3 _kG
limsupequz.4 φM
limsupequz.5 φFFnM
limsupequz.6 φN
limsupequz.7 φGFnN
limsupequz.8 φK
limsupequz.9 φkKFk=Gk
Assertion limsupequz φlim supF=lim supG

Proof

Step Hyp Ref Expression
1 limsupequz.1 kφ
2 limsupequz.2 _kF
3 limsupequz.3 _kG
4 limsupequz.4 φM
5 limsupequz.5 φFFnM
6 limsupequz.6 φN
7 limsupequz.7 φGFnN
8 limsupequz.8 φK
9 limsupequz.9 φkKFk=Gk
10 nfv jφ
11 nfv kjK
12 1 11 nfan kφjK
13 nfcv _kj
14 2 13 nffv _kFj
15 3 13 nffv _kGj
16 14 15 nfeq kFj=Gj
17 12 16 nfim kφjKFj=Gj
18 eleq1w k=jkKjK
19 18 anbi2d k=jφkKφjK
20 fveq2 k=jFk=Fj
21 fveq2 k=jGk=Gj
22 20 21 eqeq12d k=jFk=GkFj=Gj
23 19 22 imbi12d k=jφkKFk=GkφjKFj=Gj
24 17 23 9 chvarfv φjKFj=Gj
25 10 4 5 6 7 8 24 limsupequzlem φlim supF=lim supG