Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupequz.1 | |
|
limsupequz.2 | |
||
limsupequz.3 | |
||
limsupequz.4 | |
||
limsupequz.5 | |
||
limsupequz.6 | |
||
limsupequz.7 | |
||
limsupequz.8 | |
||
limsupequz.9 | |
||
Assertion | limsupequz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupequz.1 | |
|
2 | limsupequz.2 | |
|
3 | limsupequz.3 | |
|
4 | limsupequz.4 | |
|
5 | limsupequz.5 | |
|
6 | limsupequz.6 | |
|
7 | limsupequz.7 | |
|
8 | limsupequz.8 | |
|
9 | limsupequz.9 | |
|
10 | nfv | |
|
11 | nfv | |
|
12 | 1 11 | nfan | |
13 | nfcv | |
|
14 | 2 13 | nffv | |
15 | 3 13 | nffv | |
16 | 14 15 | nfeq | |
17 | 12 16 | nfim | |
18 | eleq1w | |
|
19 | 18 | anbi2d | |
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | eqeq12d | |
23 | 19 22 | imbi12d | |
24 | 17 23 9 | chvarfv | |
25 | 10 4 5 6 7 8 24 | limsupequzlem | |