| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupequz.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
limsupequz.2 |
⊢ Ⅎ 𝑘 𝐹 |
| 3 |
|
limsupequz.3 |
⊢ Ⅎ 𝑘 𝐺 |
| 4 |
|
limsupequz.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 |
|
limsupequz.5 |
⊢ ( 𝜑 → 𝐹 Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 6 |
|
limsupequz.6 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 7 |
|
limsupequz.7 |
⊢ ( 𝜑 → 𝐺 Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 8 |
|
limsupequz.8 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 9 |
|
limsupequz.9 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) |
| 12 |
1 11
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
| 14 |
2 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
| 15 |
3 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) |
| 16 |
14 15
|
nfeq |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) |
| 17 |
12 16
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) ) |
| 18 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) |
| 22 |
20 21
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) ) ) |
| 23 |
19 22
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 24 |
17 23 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑗 ) ) |
| 25 |
10 4 5 6 7 8 24
|
limsupequzlem |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = ( lim sup ‘ 𝐺 ) ) |