| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupequzlem.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
limsupequzlem.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
limsupequzlem.4 |
⊢ ( 𝜑 → 𝐹 Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 4 |
|
limsupequzlem.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 5 |
|
limsupequzlem.6 |
⊢ ( 𝜑 → 𝐺 Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 6 |
|
limsupequzlem.7 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 7 |
|
limsupequzlem.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 8 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝐾 ) = ( ℤ≥ ‘ 𝐾 ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝐾 ∈ ℤ ) |
| 10 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) → 𝑘 ∈ ℤ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝑘 ∈ ℤ ) |
| 12 |
6
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝐾 ∈ ℝ ) |
| 14 |
13
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝐾 ∈ ℝ* ) |
| 15 |
|
zssxr |
⊢ ℤ ⊆ ℝ* |
| 16 |
|
tpssi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → { 𝑀 , 𝑁 , 𝐾 } ⊆ ℤ ) |
| 17 |
2 4 6 16
|
syl3anc |
⊢ ( 𝜑 → { 𝑀 , 𝑁 , 𝐾 } ⊆ ℤ ) |
| 18 |
|
xrltso |
⊢ < Or ℝ* |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
| 20 |
|
tpfi |
⊢ { 𝑀 , 𝑁 , 𝐾 } ∈ Fin |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → { 𝑀 , 𝑁 , 𝐾 } ∈ Fin ) |
| 22 |
2
|
tpnzd |
⊢ ( 𝜑 → { 𝑀 , 𝑁 , 𝐾 } ≠ ∅ ) |
| 23 |
15
|
a1i |
⊢ ( 𝜑 → ℤ ⊆ ℝ* ) |
| 24 |
17 23
|
sstrd |
⊢ ( 𝜑 → { 𝑀 , 𝑁 , 𝐾 } ⊆ ℝ* ) |
| 25 |
|
fisupcl |
⊢ ( ( < Or ℝ* ∧ ( { 𝑀 , 𝑁 , 𝐾 } ∈ Fin ∧ { 𝑀 , 𝑁 , 𝐾 } ≠ ∅ ∧ { 𝑀 , 𝑁 , 𝐾 } ⊆ ℝ* ) ) → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 26 |
19 21 22 24 25
|
syl13anc |
⊢ ( 𝜑 → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 27 |
17 26
|
sseldd |
⊢ ( 𝜑 → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ℤ ) |
| 28 |
15 27
|
sselid |
⊢ ( 𝜑 → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ℝ* ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ℝ* ) |
| 30 |
|
eluzelre |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) → 𝑘 ∈ ℝ ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝑘 ∈ ℝ ) |
| 32 |
31
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝑘 ∈ ℝ* ) |
| 33 |
|
tpid3g |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 34 |
6 33
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 35 |
|
eqid |
⊢ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) = sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) |
| 36 |
24 34 35
|
supxrubd |
⊢ ( 𝜑 → 𝐾 ≤ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝐾 ≤ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) |
| 38 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ≤ 𝑘 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ≤ 𝑘 ) |
| 40 |
14 29 32 37 39
|
xrletrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝐾 ≤ 𝑘 ) |
| 41 |
8 9 11 40
|
eluzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 42 |
41 7
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 43 |
1 42
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 44 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 45 |
|
tpid1g |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 46 |
2 45
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 47 |
24 46 35
|
supxrubd |
⊢ ( 𝜑 → 𝑀 ≤ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) |
| 48 |
44 2 27 47
|
eluzd |
⊢ ( 𝜑 → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 49 |
|
uzss |
⊢ ( sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 50 |
48 49
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 51 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 52 |
|
tpid2g |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 53 |
4 52
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑀 , 𝑁 , 𝐾 } ) |
| 54 |
24 53 35
|
supxrubd |
⊢ ( 𝜑 → 𝑁 ≤ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) |
| 55 |
51 4 27 54
|
eluzd |
⊢ ( 𝜑 → sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 56 |
|
uzss |
⊢ ( sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 57 |
55 56
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 58 |
|
fvreseq0 |
⊢ ( ( ( 𝐹 Fn ( ℤ≥ ‘ 𝑀 ) ∧ 𝐺 Fn ( ℤ≥ ‘ 𝑁 ) ) ∧ ( ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) = ( 𝐺 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 59 |
3 5 50 57 58
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) = ( 𝐺 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 60 |
43 59
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) = ( 𝐺 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ) = ( lim sup ‘ ( 𝐺 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ) ) |
| 62 |
|
eqid |
⊢ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) = ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) |
| 63 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ∈ V ) |
| 64 |
3 63
|
fnexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 65 |
3
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = ( ℤ≥ ‘ 𝑀 ) ) |
| 66 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 67 |
65 66
|
eqsstrdi |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℤ ) |
| 68 |
27 62 64 67
|
limsupresuz2 |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ) = ( lim sup ‘ 𝐹 ) ) |
| 69 |
|
fvexd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ∈ V ) |
| 70 |
5 69
|
fnexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 71 |
5
|
fndmd |
⊢ ( 𝜑 → dom 𝐺 = ( ℤ≥ ‘ 𝑁 ) ) |
| 72 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑁 ) ⊆ ℤ |
| 73 |
71 72
|
eqsstrdi |
⊢ ( 𝜑 → dom 𝐺 ⊆ ℤ ) |
| 74 |
27 62 70 73
|
limsupresuz2 |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐺 ↾ ( ℤ≥ ‘ sup ( { 𝑀 , 𝑁 , 𝐾 } , ℝ* , < ) ) ) ) = ( lim sup ‘ 𝐺 ) ) |
| 75 |
61 68 74
|
3eqtr3d |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = ( lim sup ‘ 𝐺 ) ) |