Metamath Proof Explorer


Theorem limsupresuz2

Description: If the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupresuz2.1 ( 𝜑𝑀 ∈ ℤ )
limsupresuz2.2 𝑍 = ( ℤ𝑀 )
limsupresuz2.3 ( 𝜑𝐹𝑉 )
limsupresuz2.4 ( 𝜑 → dom 𝐹 ⊆ ℤ )
Assertion limsupresuz2 ( 𝜑 → ( lim sup ‘ ( 𝐹𝑍 ) ) = ( lim sup ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 limsupresuz2.1 ( 𝜑𝑀 ∈ ℤ )
2 limsupresuz2.2 𝑍 = ( ℤ𝑀 )
3 limsupresuz2.3 ( 𝜑𝐹𝑉 )
4 limsupresuz2.4 ( 𝜑 → dom 𝐹 ⊆ ℤ )
5 dmresss dom ( 𝐹 ↾ ℝ ) ⊆ dom 𝐹
6 5 a1i ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ dom 𝐹 )
7 6 4 sstrd ( 𝜑 → dom ( 𝐹 ↾ ℝ ) ⊆ ℤ )
8 1 2 3 7 limsupresuz ( 𝜑 → ( lim sup ‘ ( 𝐹𝑍 ) ) = ( lim sup ‘ 𝐹 ) )