Metamath Proof Explorer


Theorem limsupresuz2

Description: If the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupresuz2.1 φ M
limsupresuz2.2 Z = M
limsupresuz2.3 φ F V
limsupresuz2.4 φ dom F
Assertion limsupresuz2 φ lim sup F Z = lim sup F

Proof

Step Hyp Ref Expression
1 limsupresuz2.1 φ M
2 limsupresuz2.2 Z = M
3 limsupresuz2.3 φ F V
4 limsupresuz2.4 φ dom F
5 dmresss dom F dom F
6 5 a1i φ dom F dom F
7 6 4 sstrd φ dom F
8 1 2 3 7 limsupresuz φ lim sup F Z = lim sup F