Metamath Proof Explorer


Theorem limsupresuz

Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupresuz.m φ M
limsupresuz.z Z = M
limsupresuz.f φ F V
limsupresuz.d φ dom F
Assertion limsupresuz φ lim sup F Z = lim sup F

Proof

Step Hyp Ref Expression
1 limsupresuz.m φ M
2 limsupresuz.z Z = M
3 limsupresuz.f φ F V
4 limsupresuz.d φ dom F
5 rescom F Z = F Z
6 5 fveq2i lim sup F Z = lim sup F Z
7 6 a1i φ lim sup F Z = lim sup F Z
8 relres Rel F
9 8 a1i φ Rel F
10 relssres Rel F dom F F = F
11 9 4 10 syl2anc φ F = F
12 11 eqcomd φ F = F
13 12 reseq1d φ F M +∞ = F M +∞
14 resres F M +∞ = F M +∞
15 14 a1i φ F M +∞ = F M +∞
16 1 2 uzinico φ Z = M +∞
17 16 eqcomd φ M +∞ = Z
18 17 reseq2d φ F M +∞ = F Z
19 13 15 18 3eqtrrd φ F Z = F M +∞
20 19 fveq2d φ lim sup F Z = lim sup F M +∞
21 1 zred φ M
22 eqid M +∞ = M +∞
23 3 resexd φ F V
24 21 22 23 limsupresico φ lim sup F M +∞ = lim sup F
25 20 24 eqtrd φ lim sup F Z = lim sup F
26 7 25 eqtrd φ lim sup F Z = lim sup F
27 3 resexd φ F Z V
28 27 limsupresre φ lim sup F Z = lim sup F Z
29 3 limsupresre φ lim sup F = lim sup F
30 26 28 29 3eqtr3d φ lim sup F Z = lim sup F