Step |
Hyp |
Ref |
Expression |
1 |
|
limsupresico.1 |
|
2 |
|
limsupresico.2 |
|
3 |
|
limsupresico.3 |
|
4 |
1
|
rexrd |
|
5 |
4
|
ad2antrr |
|
6 |
|
pnfxr |
|
7 |
6
|
a1i |
|
8 |
|
ressxr |
|
9 |
6
|
a1i |
|
10 |
|
icossre |
|
11 |
1 9 10
|
syl2anc |
|
12 |
11
|
adantr |
|
13 |
2
|
eleq2i |
|
14 |
13
|
biimpi |
|
15 |
14
|
adantl |
|
16 |
12 15
|
sseldd |
|
17 |
16
|
adantr |
|
18 |
|
simpr |
|
19 |
|
elicore |
|
20 |
17 18 19
|
syl2anc |
|
21 |
8 20
|
sselid |
|
22 |
1
|
ad2antrr |
|
23 |
4
|
adantr |
|
24 |
6
|
a1i |
|
25 |
23 24 15
|
icogelbd |
|
26 |
25
|
adantr |
|
27 |
8 17
|
sselid |
|
28 |
27 7 18
|
icogelbd |
|
29 |
22 17 20 26 28
|
letrd |
|
30 |
20
|
ltpnfd |
|
31 |
5 7 21 29 30
|
elicod |
|
32 |
31 2
|
eleqtrrdi |
|
33 |
32
|
ssd |
|
34 |
|
resima2 |
|
35 |
33 34
|
syl |
|
36 |
35
|
ineq1d |
|
37 |
36
|
supeq1d |
|
38 |
37
|
mpteq2dva |
|
39 |
38
|
rneqd |
|
40 |
2 11
|
eqsstrid |
|
41 |
40
|
mptima2 |
|
42 |
40
|
mptima2 |
|
43 |
39 41 42
|
3eqtr4d |
|
44 |
43
|
infeq1d |
|
45 |
|
eqid |
|
46 |
3
|
resexd |
|
47 |
2
|
supeq1i |
|
48 |
47
|
a1i |
|
49 |
1
|
renepnfd |
|
50 |
|
icopnfsup |
|
51 |
4 49 50
|
syl2anc |
|
52 |
48 51
|
eqtrd |
|
53 |
45 46 40 52
|
limsupval2 |
|
54 |
|
eqid |
|
55 |
54 3 40 52
|
limsupval2 |
|
56 |
44 53 55
|
3eqtr4d |
|