Metamath Proof Explorer


Theorem limsupresico

Description: The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupresico.1 φ M
limsupresico.2 Z = M +∞
limsupresico.3 φ F V
Assertion limsupresico φ lim sup F Z = lim sup F

Proof

Step Hyp Ref Expression
1 limsupresico.1 φ M
2 limsupresico.2 Z = M +∞
3 limsupresico.3 φ F V
4 1 rexrd φ M *
5 4 ad2antrr φ k Z y k +∞ M *
6 pnfxr +∞ *
7 6 a1i φ k Z y k +∞ +∞ *
8 ressxr *
9 6 a1i φ +∞ *
10 icossre M +∞ * M +∞
11 1 9 10 syl2anc φ M +∞
12 11 adantr φ k Z M +∞
13 2 eleq2i k Z k M +∞
14 13 biimpi k Z k M +∞
15 14 adantl φ k Z k M +∞
16 12 15 sseldd φ k Z k
17 16 adantr φ k Z y k +∞ k
18 simpr φ k Z y k +∞ y k +∞
19 elicore k y k +∞ y
20 17 18 19 syl2anc φ k Z y k +∞ y
21 8 20 sselid φ k Z y k +∞ y *
22 1 ad2antrr φ k Z y k +∞ M
23 4 adantr φ k Z M *
24 6 a1i φ k Z +∞ *
25 23 24 15 icogelbd φ k Z M k
26 25 adantr φ k Z y k +∞ M k
27 8 17 sselid φ k Z y k +∞ k *
28 27 7 18 icogelbd φ k Z y k +∞ k y
29 22 17 20 26 28 letrd φ k Z y k +∞ M y
30 20 ltpnfd φ k Z y k +∞ y < +∞
31 5 7 21 29 30 elicod φ k Z y k +∞ y M +∞
32 31 2 eleqtrrdi φ k Z y k +∞ y Z
33 32 ssd φ k Z k +∞ Z
34 resima2 k +∞ Z F Z k +∞ = F k +∞
35 33 34 syl φ k Z F Z k +∞ = F k +∞
36 35 ineq1d φ k Z F Z k +∞ * = F k +∞ *
37 36 supeq1d φ k Z sup F Z k +∞ * * < = sup F k +∞ * * <
38 37 mpteq2dva φ k Z sup F Z k +∞ * * < = k Z sup F k +∞ * * <
39 38 rneqd φ ran k Z sup F Z k +∞ * * < = ran k Z sup F k +∞ * * <
40 2 11 eqsstrid φ Z
41 40 mptima2 φ k sup F Z k +∞ * * < Z = ran k Z sup F Z k +∞ * * <
42 40 mptima2 φ k sup F k +∞ * * < Z = ran k Z sup F k +∞ * * <
43 39 41 42 3eqtr4d φ k sup F Z k +∞ * * < Z = k sup F k +∞ * * < Z
44 43 infeq1d φ sup k sup F Z k +∞ * * < Z * < = sup k sup F k +∞ * * < Z * <
45 eqid k sup F Z k +∞ * * < = k sup F Z k +∞ * * <
46 3 resexd φ F Z V
47 2 supeq1i sup Z * < = sup M +∞ * <
48 47 a1i φ sup Z * < = sup M +∞ * <
49 1 renepnfd φ M +∞
50 icopnfsup M * M +∞ sup M +∞ * < = +∞
51 4 49 50 syl2anc φ sup M +∞ * < = +∞
52 48 51 eqtrd φ sup Z * < = +∞
53 45 46 40 52 limsupval2 φ lim sup F Z = sup k sup F Z k +∞ * * < Z * <
54 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
55 54 3 40 52 limsupval2 φ lim sup F = sup k sup F k +∞ * * < Z * <
56 44 53 55 3eqtr4d φ lim sup F Z = lim sup F