| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupresico.1 |
|
| 2 |
|
limsupresico.2 |
|
| 3 |
|
limsupresico.3 |
|
| 4 |
1
|
rexrd |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
|
pnfxr |
|
| 7 |
6
|
a1i |
|
| 8 |
|
ressxr |
|
| 9 |
6
|
a1i |
|
| 10 |
|
icossre |
|
| 11 |
1 9 10
|
syl2anc |
|
| 12 |
11
|
adantr |
|
| 13 |
2
|
eleq2i |
|
| 14 |
13
|
biimpi |
|
| 15 |
14
|
adantl |
|
| 16 |
12 15
|
sseldd |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
|
elicore |
|
| 20 |
17 18 19
|
syl2anc |
|
| 21 |
8 20
|
sselid |
|
| 22 |
1
|
ad2antrr |
|
| 23 |
4
|
adantr |
|
| 24 |
6
|
a1i |
|
| 25 |
23 24 15
|
icogelbd |
|
| 26 |
25
|
adantr |
|
| 27 |
8 17
|
sselid |
|
| 28 |
27 7 18
|
icogelbd |
|
| 29 |
22 17 20 26 28
|
letrd |
|
| 30 |
20
|
ltpnfd |
|
| 31 |
5 7 21 29 30
|
elicod |
|
| 32 |
31 2
|
eleqtrrdi |
|
| 33 |
32
|
ssd |
|
| 34 |
|
resima2 |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
ineq1d |
|
| 37 |
36
|
supeq1d |
|
| 38 |
37
|
mpteq2dva |
|
| 39 |
38
|
rneqd |
|
| 40 |
2 11
|
eqsstrid |
|
| 41 |
40
|
mptimass |
|
| 42 |
40
|
mptimass |
|
| 43 |
39 41 42
|
3eqtr4d |
|
| 44 |
43
|
infeq1d |
|
| 45 |
|
eqid |
|
| 46 |
3
|
resexd |
|
| 47 |
2
|
supeq1i |
|
| 48 |
47
|
a1i |
|
| 49 |
1
|
renepnfd |
|
| 50 |
|
icopnfsup |
|
| 51 |
4 49 50
|
syl2anc |
|
| 52 |
48 51
|
eqtrd |
|
| 53 |
45 46 40 52
|
limsupval2 |
|
| 54 |
|
eqid |
|
| 55 |
54 3 40 52
|
limsupval2 |
|
| 56 |
44 53 55
|
3eqtr4d |
|