Metamath Proof Explorer


Theorem limsupval2

Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupval.1 G=ksupFk+∞**<
limsupval2.1 φFV
limsupval2.2 φA
limsupval2.3 φsupA*<=+∞
Assertion limsupval2 φlim supF=supGA*<

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 limsupval2.1 φFV
3 limsupval2.2 φA
4 limsupval2.3 φsupA*<=+∞
5 1 limsupval FVlim supF=supranG*<
6 2 5 syl φlim supF=supranG*<
7 imassrn GAranG
8 1 limsupgf G:*
9 frn G:*ranG*
10 8 9 ax-mp ranG*
11 infxrlb ranG*xranGsupranG*<x
12 11 ralrimiva ranG*xranGsupranG*<x
13 10 12 mp1i φxranGsupranG*<x
14 ssralv GAranGxranGsupranG*<xxGAsupranG*<x
15 7 13 14 mpsyl φxGAsupranG*<x
16 7 10 sstri GA*
17 infxrcl ranG*supranG*<*
18 10 17 ax-mp supranG*<*
19 infxrgelb GA*supranG*<*supranG*<supGA*<xGAsupranG*<x
20 16 18 19 mp2an supranG*<supGA*<xGAsupranG*<x
21 15 20 sylibr φsupranG*<supGA*<
22 ressxr *
23 3 22 sstrdi φA*
24 supxrunb1 A*nxAnxsupA*<=+∞
25 23 24 syl φnxAnxsupA*<=+∞
26 4 25 mpbird φnxAnx
27 infxrcl GA*supGA*<*
28 16 27 mp1i φnxAnxsupGA*<*
29 3 sselda φxAx
30 29 ad2ant2r φnxAnxx
31 8 ffvelcdmi xGx*
32 30 31 syl φnxAnxGx*
33 8 ffvelcdmi nGn*
34 33 ad2antlr φnxAnxGn*
35 ffn G:*GFn
36 8 35 mp1i φnxAnxGFn
37 3 ad2antrr φnxAnxA
38 simprl φnxAnxxA
39 fnfvima GFnAxAGxGA
40 36 37 38 39 syl3anc φnxAnxGxGA
41 infxrlb GA*GxGAsupGA*<Gx
42 16 40 41 sylancr φnxAnxsupGA*<Gx
43 simplr φnxAnxn
44 simprr φnxAnxnx
45 limsupgord nxnxsupFx+∞**<supFn+∞**<
46 43 30 44 45 syl3anc φnxAnxsupFx+∞**<supFn+∞**<
47 1 limsupgval xGx=supFx+∞**<
48 30 47 syl φnxAnxGx=supFx+∞**<
49 1 limsupgval nGn=supFn+∞**<
50 49 ad2antlr φnxAnxGn=supFn+∞**<
51 46 48 50 3brtr4d φnxAnxGxGn
52 28 32 34 42 51 xrletrd φnxAnxsupGA*<Gn
53 52 rexlimdvaa φnxAnxsupGA*<Gn
54 53 ralimdva φnxAnxnsupGA*<Gn
55 26 54 mpd φnsupGA*<Gn
56 8 35 ax-mp GFn
57 breq2 x=GnsupGA*<xsupGA*<Gn
58 57 ralrn GFnxranGsupGA*<xnsupGA*<Gn
59 56 58 ax-mp xranGsupGA*<xnsupGA*<Gn
60 55 59 sylibr φxranGsupGA*<x
61 16 27 ax-mp supGA*<*
62 infxrgelb ranG*supGA*<*supGA*<supranG*<xranGsupGA*<x
63 10 61 62 mp2an supGA*<supranG*<xranGsupGA*<x
64 60 63 sylibr φsupGA*<supranG*<
65 xrletri3 supranG*<*supGA*<*supranG*<=supGA*<supranG*<supGA*<supGA*<supranG*<
66 18 61 65 mp2an supranG*<=supGA*<supranG*<supGA*<supGA*<supranG*<
67 21 64 66 sylanbrc φsupranG*<=supGA*<
68 6 67 eqtrd φlim supF=supGA*<