Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupval.1 | |
|
limsupval2.1 | |
||
limsupval2.2 | |
||
limsupval2.3 | |
||
Assertion | limsupval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval.1 | |
|
2 | limsupval2.1 | |
|
3 | limsupval2.2 | |
|
4 | limsupval2.3 | |
|
5 | 1 | limsupval | |
6 | 2 5 | syl | |
7 | imassrn | |
|
8 | 1 | limsupgf | |
9 | frn | |
|
10 | 8 9 | ax-mp | |
11 | infxrlb | |
|
12 | 11 | ralrimiva | |
13 | 10 12 | mp1i | |
14 | ssralv | |
|
15 | 7 13 14 | mpsyl | |
16 | 7 10 | sstri | |
17 | infxrcl | |
|
18 | 10 17 | ax-mp | |
19 | infxrgelb | |
|
20 | 16 18 19 | mp2an | |
21 | 15 20 | sylibr | |
22 | ressxr | |
|
23 | 3 22 | sstrdi | |
24 | supxrunb1 | |
|
25 | 23 24 | syl | |
26 | 4 25 | mpbird | |
27 | infxrcl | |
|
28 | 16 27 | mp1i | |
29 | 3 | sselda | |
30 | 29 | ad2ant2r | |
31 | 8 | ffvelcdmi | |
32 | 30 31 | syl | |
33 | 8 | ffvelcdmi | |
34 | 33 | ad2antlr | |
35 | ffn | |
|
36 | 8 35 | mp1i | |
37 | 3 | ad2antrr | |
38 | simprl | |
|
39 | fnfvima | |
|
40 | 36 37 38 39 | syl3anc | |
41 | infxrlb | |
|
42 | 16 40 41 | sylancr | |
43 | simplr | |
|
44 | simprr | |
|
45 | limsupgord | |
|
46 | 43 30 44 45 | syl3anc | |
47 | 1 | limsupgval | |
48 | 30 47 | syl | |
49 | 1 | limsupgval | |
50 | 49 | ad2antlr | |
51 | 46 48 50 | 3brtr4d | |
52 | 28 32 34 42 51 | xrletrd | |
53 | 52 | rexlimdvaa | |
54 | 53 | ralimdva | |
55 | 26 54 | mpd | |
56 | 8 35 | ax-mp | |
57 | breq2 | |
|
58 | 57 | ralrn | |
59 | 56 58 | ax-mp | |
60 | 55 59 | sylibr | |
61 | 16 27 | ax-mp | |
62 | infxrgelb | |
|
63 | 10 61 62 | mp2an | |
64 | 60 63 | sylibr | |
65 | xrletri3 | |
|
66 | 18 61 65 | mp2an | |
67 | 21 64 66 | sylanbrc | |
68 | 6 67 | eqtrd | |