Metamath Proof Explorer


Theorem limsupgf

Description: Closure of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1 G=ksupFk+∞**<
Assertion limsupgf G:*

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 inss2 Fk+∞**
3 supxrcl Fk+∞**supFk+∞**<*
4 2 3 mp1i ksupFk+∞**<*
5 1 4 fmpti G:*