Metamath Proof Explorer


Theorem limsupgf

Description: Closure of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1
|- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
Assertion limsupgf
|- G : RR --> RR*

Proof

Step Hyp Ref Expression
1 limsupval.1
 |-  G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
2 inss2
 |-  ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR*
3 supxrcl
 |-  ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* )
4 2 3 mp1i
 |-  ( k e. RR -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* )
5 1 4 fmpti
 |-  G : RR --> RR*