Metamath Proof Explorer


Theorem limsupgval

Description: Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1 G=ksupFk+∞**<
Assertion limsupgval MGM=supFM+∞**<

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 oveq1 k=Mk+∞=M+∞
3 2 imaeq2d k=MFk+∞=FM+∞
4 3 ineq1d k=MFk+∞*=FM+∞*
5 4 supeq1d k=MsupFk+∞**<=supFM+∞**<
6 xrltso <Or*
7 6 supex supFM+∞**<V
8 5 1 7 fvmpt MGM=supFM+∞**<