Metamath Proof Explorer


Theorem limsupgord

Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion limsupgord ABABsupFB+∞**<supFA+∞**<

Proof

Step Hyp Ref Expression
1 rexr AA*
2 1 3ad2ant1 ABABA*
3 simp3 ABABAB
4 df-ico .=x*,y*z*|xzz<y
5 xrletr A*B*w*ABBwAw
6 4 4 5 ixxss1 A*ABB+∞A+∞
7 2 3 6 syl2anc ABABB+∞A+∞
8 imass2 B+∞A+∞FB+∞FA+∞
9 ssrin FB+∞FA+∞FB+∞*FA+∞*
10 7 8 9 3syl ABABFB+∞*FA+∞*
11 inss2 FA+∞**
12 supxrcl FA+∞**supFA+∞**<*
13 11 12 ax-mp supFA+∞**<*
14 xrleid supFA+∞**<*supFA+∞**<supFA+∞**<
15 13 14 ax-mp supFA+∞**<supFA+∞**<
16 supxrleub FA+∞**supFA+∞**<*supFA+∞**<supFA+∞**<xFA+∞*xsupFA+∞**<
17 11 13 16 mp2an supFA+∞**<supFA+∞**<xFA+∞*xsupFA+∞**<
18 15 17 mpbi xFA+∞*xsupFA+∞**<
19 ssralv FB+∞*FA+∞*xFA+∞*xsupFA+∞**<xFB+∞*xsupFA+∞**<
20 10 18 19 mpisyl ABABxFB+∞*xsupFA+∞**<
21 inss2 FB+∞**
22 supxrleub FB+∞**supFA+∞**<*supFB+∞**<supFA+∞**<xFB+∞*xsupFA+∞**<
23 21 13 22 mp2an supFB+∞**<supFA+∞**<xFB+∞*xsupFA+∞**<
24 20 23 sylibr ABABsupFB+∞**<supFA+∞**<