Metamath Proof Explorer


Theorem limsupgord

Description: Ordering property of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion limsupgord A B A B sup F B +∞ * * < sup F A +∞ * * <

Proof

Step Hyp Ref Expression
1 rexr A A *
2 1 3ad2ant1 A B A B A *
3 simp3 A B A B A B
4 df-ico . = x * , y * z * | x z z < y
5 xrletr A * B * w * A B B w A w
6 4 4 5 ixxss1 A * A B B +∞ A +∞
7 2 3 6 syl2anc A B A B B +∞ A +∞
8 imass2 B +∞ A +∞ F B +∞ F A +∞
9 ssrin F B +∞ F A +∞ F B +∞ * F A +∞ *
10 7 8 9 3syl A B A B F B +∞ * F A +∞ *
11 inss2 F A +∞ * *
12 supxrcl F A +∞ * * sup F A +∞ * * < *
13 11 12 ax-mp sup F A +∞ * * < *
14 xrleid sup F A +∞ * * < * sup F A +∞ * * < sup F A +∞ * * <
15 13 14 ax-mp sup F A +∞ * * < sup F A +∞ * * <
16 supxrleub F A +∞ * * sup F A +∞ * * < * sup F A +∞ * * < sup F A +∞ * * < x F A +∞ * x sup F A +∞ * * <
17 11 13 16 mp2an sup F A +∞ * * < sup F A +∞ * * < x F A +∞ * x sup F A +∞ * * <
18 15 17 mpbi x F A +∞ * x sup F A +∞ * * <
19 ssralv F B +∞ * F A +∞ * x F A +∞ * x sup F A +∞ * * < x F B +∞ * x sup F A +∞ * * <
20 10 18 19 mpisyl A B A B x F B +∞ * x sup F A +∞ * * <
21 inss2 F B +∞ * *
22 supxrleub F B +∞ * * sup F A +∞ * * < * sup F B +∞ * * < sup F A +∞ * * < x F B +∞ * x sup F A +∞ * * <
23 21 13 22 mp2an sup F B +∞ * * < sup F A +∞ * * < x F B +∞ * x sup F A +∞ * * <
24 20 23 sylibr A B A B sup F B +∞ * * < sup F A +∞ * * <