Metamath Proof Explorer


Theorem limsupcl

Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2020)

Ref Expression
Assertion limsupcl FVlim supF*

Proof

Step Hyp Ref Expression
1 elex FVFV
2 df-limsup lim sup=fVsupranksupfk+∞**<*<
3 eqid ksupfk+∞**<=ksupfk+∞**<
4 inss2 fk+∞**
5 supxrcl fk+∞**supfk+∞**<*
6 4 5 mp1i ksupfk+∞**<*
7 3 6 fmpti ksupfk+∞**<:*
8 frn ksupfk+∞**<:*ranksupfk+∞**<*
9 7 8 ax-mp ranksupfk+∞**<*
10 infxrcl ranksupfk+∞**<*supranksupfk+∞**<*<*
11 9 10 mp1i fVsupranksupfk+∞**<*<*
12 2 11 fmpti lim sup:V*
13 12 ffvelcdmi FVlim supF*
14 1 13 syl FVlim supF*