Metamath Proof Explorer


Definition df-limsup

Description: Define the superior limit of an infinite sequence of extended real numbers. Definition 12-4.1 of Gleason p. 175. See limsupval for its value. (Contributed by NM, 26-Oct-2005) (Revised by AV, 11-Sep-2020)

Ref Expression
Assertion df-limsup lim sup=xVsupranksupxk+∞**<*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 clsp classlim sup
1 vx setvarx
2 cvv classV
3 vk setvark
4 cr class
5 1 cv setvarx
6 3 cv setvark
7 cico class.
8 cpnf class+∞
9 6 8 7 co classk+∞
10 5 9 cima classxk+∞
11 cxr class*
12 10 11 cin classxk+∞*
13 clt class<
14 12 11 13 csup classsupxk+∞**<
15 3 4 14 cmpt classksupxk+∞**<
16 15 crn classranksupxk+∞**<
17 16 11 13 cinf classsupranksupxk+∞**<*<
18 1 2 17 cmpt classxVsupranksupxk+∞**<*<
19 0 18 wceq wfflim sup=xVsupranksupxk+∞**<*<