Step |
Hyp |
Ref |
Expression |
0 |
|
clsp |
|- limsup |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vk |
|- k |
4 |
|
cr |
|- RR |
5 |
1
|
cv |
|- x |
6 |
3
|
cv |
|- k |
7 |
|
cico |
|- [,) |
8 |
|
cpnf |
|- +oo |
9 |
6 8 7
|
co |
|- ( k [,) +oo ) |
10 |
5 9
|
cima |
|- ( x " ( k [,) +oo ) ) |
11 |
|
cxr |
|- RR* |
12 |
10 11
|
cin |
|- ( ( x " ( k [,) +oo ) ) i^i RR* ) |
13 |
|
clt |
|- < |
14 |
12 11 13
|
csup |
|- sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) |
15 |
3 4 14
|
cmpt |
|- ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
16 |
15
|
crn |
|- ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
17 |
16 11 13
|
cinf |
|- inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
18 |
1 2 17
|
cmpt |
|- ( x e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
19 |
0 18
|
wceq |
|- limsup = ( x e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |