Metamath Proof Explorer


Theorem ixxss1

Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses ixx.1 O=x*,y*z*|xRzzSy
ixxss1.2 P=x*,y*z*|xTzzSy
ixxss1.3 A*B*w*AWBBTwARw
Assertion ixxss1 A*AWBBPCAOC

Proof

Step Hyp Ref Expression
1 ixx.1 O=x*,y*z*|xRzzSy
2 ixxss1.2 P=x*,y*z*|xTzzSy
3 ixxss1.3 A*B*w*AWBBTwARw
4 2 elixx3g wBPCB*C*w*BTwwSC
5 4 simplbi wBPCB*C*w*
6 5 adantl A*AWBwBPCB*C*w*
7 6 simp3d A*AWBwBPCw*
8 simplr A*AWBwBPCAWB
9 4 simprbi wBPCBTwwSC
10 9 adantl A*AWBwBPCBTwwSC
11 10 simpld A*AWBwBPCBTw
12 simpll A*AWBwBPCA*
13 6 simp1d A*AWBwBPCB*
14 12 13 7 3 syl3anc A*AWBwBPCAWBBTwARw
15 8 11 14 mp2and A*AWBwBPCARw
16 10 simprd A*AWBwBPCwSC
17 6 simp2d A*AWBwBPCC*
18 1 elixx1 A*C*wAOCw*ARwwSC
19 12 17 18 syl2anc A*AWBwBPCwAOCw*ARwwSC
20 7 15 16 19 mpbir3and A*AWBwBPCwAOC
21 20 ex A*AWBwBPCwAOC
22 21 ssrdv A*AWBBPCAOC