Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixxss1.2 |
|- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z S y ) } ) |
3 |
|
ixxss1.3 |
|- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
4 |
2
|
elixx3g |
|- ( w e. ( B P C ) <-> ( ( B e. RR* /\ C e. RR* /\ w e. RR* ) /\ ( B T w /\ w S C ) ) ) |
5 |
4
|
simplbi |
|- ( w e. ( B P C ) -> ( B e. RR* /\ C e. RR* /\ w e. RR* ) ) |
6 |
5
|
adantl |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( B e. RR* /\ C e. RR* /\ w e. RR* ) ) |
7 |
6
|
simp3d |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> w e. RR* ) |
8 |
|
simplr |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> A W B ) |
9 |
4
|
simprbi |
|- ( w e. ( B P C ) -> ( B T w /\ w S C ) ) |
10 |
9
|
adantl |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( B T w /\ w S C ) ) |
11 |
10
|
simpld |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> B T w ) |
12 |
|
simpll |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> A e. RR* ) |
13 |
6
|
simp1d |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> B e. RR* ) |
14 |
12 13 7 3
|
syl3anc |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
15 |
8 11 14
|
mp2and |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> A R w ) |
16 |
10
|
simprd |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> w S C ) |
17 |
6
|
simp2d |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> C e. RR* ) |
18 |
1
|
elixx1 |
|- ( ( A e. RR* /\ C e. RR* ) -> ( w e. ( A O C ) <-> ( w e. RR* /\ A R w /\ w S C ) ) ) |
19 |
12 17 18
|
syl2anc |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> ( w e. ( A O C ) <-> ( w e. RR* /\ A R w /\ w S C ) ) ) |
20 |
7 15 16 19
|
mpbir3and |
|- ( ( ( A e. RR* /\ A W B ) /\ w e. ( B P C ) ) -> w e. ( A O C ) ) |
21 |
20
|
ex |
|- ( ( A e. RR* /\ A W B ) -> ( w e. ( B P C ) -> w e. ( A O C ) ) ) |
22 |
21
|
ssrdv |
|- ( ( A e. RR* /\ A W B ) -> ( B P C ) C_ ( A O C ) ) |