Step |
Hyp |
Ref |
Expression |
1 |
|
limsuppnfdlem.a |
|
2 |
|
limsuppnfdlem.f |
|
3 |
|
limsuppnfdlem.u |
|
4 |
|
limsuppnfdlem.g |
|
5 |
|
reex |
|
6 |
5
|
a1i |
|
7 |
6 1
|
ssexd |
|
8 |
2 7
|
fexd |
|
9 |
4
|
limsupval |
|
10 |
8 9
|
syl |
|
11 |
2
|
ffund |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
2
|
fdmd |
|
15 |
14
|
adantr |
|
16 |
13 15
|
eleqtrrd |
|
17 |
12 16
|
jca |
|
18 |
17
|
ad4ant13 |
|
19 |
|
simpllr |
|
20 |
19
|
rexrd |
|
21 |
|
pnfxr |
|
22 |
21
|
a1i |
|
23 |
1
|
ssrexr |
|
24 |
23
|
sselda |
|
25 |
24
|
ad4ant13 |
|
26 |
|
simpr |
|
27 |
1
|
sselda |
|
28 |
27
|
ltpnfd |
|
29 |
28
|
ad4ant13 |
|
30 |
20 22 25 26 29
|
elicod |
|
31 |
|
funfvima |
|
32 |
18 30 31
|
sylc |
|
33 |
2
|
ffvelrnda |
|
34 |
33
|
ad4ant13 |
|
35 |
32 34
|
elind |
|
36 |
35
|
adantllr |
|
37 |
36
|
adantrr |
|
38 |
|
simprr |
|
39 |
|
breq2 |
|
40 |
39
|
rspcev |
|
41 |
37 38 40
|
syl2anc |
|
42 |
3
|
r19.21bi |
|
43 |
42
|
r19.21bi |
|
44 |
43
|
an32s |
|
45 |
41 44
|
r19.29a |
|
46 |
45
|
ralrimiva |
|
47 |
|
inss2 |
|
48 |
|
supxrunb3 |
|
49 |
47 48
|
mp1i |
|
50 |
46 49
|
mpbid |
|
51 |
50
|
mpteq2dva |
|
52 |
4 51
|
syl5eq |
|
53 |
52
|
rneqd |
|
54 |
|
eqid |
|
55 |
|
ren0 |
|
56 |
55
|
a1i |
|
57 |
54 56
|
rnmptc |
|
58 |
53 57
|
eqtrd |
|
59 |
58
|
infeq1d |
|
60 |
|
xrltso |
|
61 |
|
infsn |
|
62 |
60 21 61
|
mp2an |
|
63 |
62
|
a1i |
|
64 |
10 59 63
|
3eqtrd |
|