Metamath Proof Explorer


Theorem limsuppnfdlem

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnfdlem.a φA
limsuppnfdlem.f φF:A*
limsuppnfdlem.u φxkjAkjxFj
limsuppnfdlem.g G=ksupFk+∞**<
Assertion limsuppnfdlem φlim supF=+∞

Proof

Step Hyp Ref Expression
1 limsuppnfdlem.a φA
2 limsuppnfdlem.f φF:A*
3 limsuppnfdlem.u φxkjAkjxFj
4 limsuppnfdlem.g G=ksupFk+∞**<
5 reex V
6 5 a1i φV
7 6 1 ssexd φAV
8 2 7 fexd φFV
9 4 limsupval FVlim supF=supranG*<
10 8 9 syl φlim supF=supranG*<
11 2 ffund φFunF
12 11 adantr φjAFunF
13 simpr φjAjA
14 2 fdmd φdomF=A
15 14 adantr φjAdomF=A
16 13 15 eleqtrrd φjAjdomF
17 12 16 jca φjAFunFjdomF
18 17 ad4ant13 φkjAkjFunFjdomF
19 simpllr φkjAkjk
20 19 rexrd φkjAkjk*
21 pnfxr +∞*
22 21 a1i φkjAkj+∞*
23 1 ssrexr φA*
24 23 sselda φjAj*
25 24 ad4ant13 φkjAkjj*
26 simpr φkjAkjkj
27 1 sselda φjAj
28 27 ltpnfd φjAj<+∞
29 28 ad4ant13 φkjAkjj<+∞
30 20 22 25 26 29 elicod φkjAkjjk+∞
31 funfvima FunFjdomFjk+∞FjFk+∞
32 18 30 31 sylc φkjAkjFjFk+∞
33 2 ffvelcdmda φjAFj*
34 33 ad4ant13 φkjAkjFj*
35 32 34 elind φkjAkjFjFk+∞*
36 35 adantllr φkxjAkjFjFk+∞*
37 36 adantrr φkxjAkjxFjFjFk+∞*
38 simprr φkxjAkjxFjxFj
39 breq2 y=FjxyxFj
40 39 rspcev FjFk+∞*xFjyFk+∞*xy
41 37 38 40 syl2anc φkxjAkjxFjyFk+∞*xy
42 3 r19.21bi φxkjAkjxFj
43 42 r19.21bi φxkjAkjxFj
44 43 an32s φkxjAkjxFj
45 41 44 r19.29a φkxyFk+∞*xy
46 45 ralrimiva φkxyFk+∞*xy
47 inss2 Fk+∞**
48 supxrunb3 Fk+∞**xyFk+∞*xysupFk+∞**<=+∞
49 47 48 mp1i φkxyFk+∞*xysupFk+∞**<=+∞
50 46 49 mpbid φksupFk+∞**<=+∞
51 50 mpteq2dva φksupFk+∞**<=k+∞
52 4 51 eqtrid φG=k+∞
53 52 rneqd φranG=rank+∞
54 eqid k+∞=k+∞
55 ren0
56 55 a1i φ
57 54 56 rnmptc φrank+∞=+∞
58 53 57 eqtrd φranG=+∞
59 58 infeq1d φsupranG*<=sup+∞*<
60 xrltso <Or*
61 infsn <Or*+∞*sup+∞*<=+∞
62 60 21 61 mp2an sup+∞*<=+∞
63 62 a1i φsup+∞*<=+∞
64 10 59 63 3eqtrd φlim supF=+∞