Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsuppnfdlem.a | |
|
limsuppnfdlem.f | |
||
limsuppnfdlem.u | |
||
limsuppnfdlem.g | |
||
Assertion | limsuppnfdlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsuppnfdlem.a | |
|
2 | limsuppnfdlem.f | |
|
3 | limsuppnfdlem.u | |
|
4 | limsuppnfdlem.g | |
|
5 | reex | |
|
6 | 5 | a1i | |
7 | 6 1 | ssexd | |
8 | 2 7 | fexd | |
9 | 4 | limsupval | |
10 | 8 9 | syl | |
11 | 2 | ffund | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 2 | fdmd | |
15 | 14 | adantr | |
16 | 13 15 | eleqtrrd | |
17 | 12 16 | jca | |
18 | 17 | ad4ant13 | |
19 | simpllr | |
|
20 | 19 | rexrd | |
21 | pnfxr | |
|
22 | 21 | a1i | |
23 | 1 | ssrexr | |
24 | 23 | sselda | |
25 | 24 | ad4ant13 | |
26 | simpr | |
|
27 | 1 | sselda | |
28 | 27 | ltpnfd | |
29 | 28 | ad4ant13 | |
30 | 20 22 25 26 29 | elicod | |
31 | funfvima | |
|
32 | 18 30 31 | sylc | |
33 | 2 | ffvelcdmda | |
34 | 33 | ad4ant13 | |
35 | 32 34 | elind | |
36 | 35 | adantllr | |
37 | 36 | adantrr | |
38 | simprr | |
|
39 | breq2 | |
|
40 | 39 | rspcev | |
41 | 37 38 40 | syl2anc | |
42 | 3 | r19.21bi | |
43 | 42 | r19.21bi | |
44 | 43 | an32s | |
45 | 41 44 | r19.29a | |
46 | 45 | ralrimiva | |
47 | inss2 | |
|
48 | supxrunb3 | |
|
49 | 47 48 | mp1i | |
50 | 46 49 | mpbid | |
51 | 50 | mpteq2dva | |
52 | 4 51 | eqtrid | |
53 | 52 | rneqd | |
54 | eqid | |
|
55 | ren0 | |
|
56 | 55 | a1i | |
57 | 54 56 | rnmptc | |
58 | 53 57 | eqtrd | |
59 | 58 | infeq1d | |
60 | xrltso | |
|
61 | infsn | |
|
62 | 60 21 61 | mp2an | |
63 | 62 | a1i | |
64 | 10 59 63 | 3eqtrd | |