Metamath Proof Explorer


Theorem limsuppnfdlem

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnfdlem.a φ A
limsuppnfdlem.f φ F : A *
limsuppnfdlem.u φ x k j A k j x F j
limsuppnfdlem.g G = k sup F k +∞ * * <
Assertion limsuppnfdlem φ lim sup F = +∞

Proof

Step Hyp Ref Expression
1 limsuppnfdlem.a φ A
2 limsuppnfdlem.f φ F : A *
3 limsuppnfdlem.u φ x k j A k j x F j
4 limsuppnfdlem.g G = k sup F k +∞ * * <
5 reex V
6 5 a1i φ V
7 6 1 ssexd φ A V
8 2 7 fexd φ F V
9 4 limsupval F V lim sup F = sup ran G * <
10 8 9 syl φ lim sup F = sup ran G * <
11 2 ffund φ Fun F
12 11 adantr φ j A Fun F
13 simpr φ j A j A
14 2 fdmd φ dom F = A
15 14 adantr φ j A dom F = A
16 13 15 eleqtrrd φ j A j dom F
17 12 16 jca φ j A Fun F j dom F
18 17 ad4ant13 φ k j A k j Fun F j dom F
19 simpllr φ k j A k j k
20 19 rexrd φ k j A k j k *
21 pnfxr +∞ *
22 21 a1i φ k j A k j +∞ *
23 1 ssrexr φ A *
24 23 sselda φ j A j *
25 24 ad4ant13 φ k j A k j j *
26 simpr φ k j A k j k j
27 1 sselda φ j A j
28 27 ltpnfd φ j A j < +∞
29 28 ad4ant13 φ k j A k j j < +∞
30 20 22 25 26 29 elicod φ k j A k j j k +∞
31 funfvima Fun F j dom F j k +∞ F j F k +∞
32 18 30 31 sylc φ k j A k j F j F k +∞
33 2 ffvelrnda φ j A F j *
34 33 ad4ant13 φ k j A k j F j *
35 32 34 elind φ k j A k j F j F k +∞ *
36 35 adantllr φ k x j A k j F j F k +∞ *
37 36 adantrr φ k x j A k j x F j F j F k +∞ *
38 simprr φ k x j A k j x F j x F j
39 breq2 y = F j x y x F j
40 39 rspcev F j F k +∞ * x F j y F k +∞ * x y
41 37 38 40 syl2anc φ k x j A k j x F j y F k +∞ * x y
42 3 r19.21bi φ x k j A k j x F j
43 42 r19.21bi φ x k j A k j x F j
44 43 an32s φ k x j A k j x F j
45 41 44 r19.29a φ k x y F k +∞ * x y
46 45 ralrimiva φ k x y F k +∞ * x y
47 inss2 F k +∞ * *
48 supxrunb3 F k +∞ * * x y F k +∞ * x y sup F k +∞ * * < = +∞
49 47 48 mp1i φ k x y F k +∞ * x y sup F k +∞ * * < = +∞
50 46 49 mpbid φ k sup F k +∞ * * < = +∞
51 50 mpteq2dva φ k sup F k +∞ * * < = k +∞
52 4 51 syl5eq φ G = k +∞
53 52 rneqd φ ran G = ran k +∞
54 eqid k +∞ = k +∞
55 ren0
56 55 a1i φ
57 54 56 rnmptc φ ran k +∞ = +∞
58 53 57 eqtrd φ ran G = +∞
59 58 infeq1d φ sup ran G * < = sup +∞ * <
60 xrltso < Or *
61 infsn < Or * +∞ * sup +∞ * < = +∞
62 60 21 61 mp2an sup +∞ * < = +∞
63 62 a1i φ sup +∞ * < = +∞
64 10 59 63 3eqtrd φ lim sup F = +∞