Metamath Proof Explorer


Theorem infsn

Description: The infimum of a singleton. (Contributed by NM, 2-Oct-2007)

Ref Expression
Assertion infsn ROrABAsupBAR=B

Proof

Step Hyp Ref Expression
1 dfsn2 B=BB
2 1 infeq1i supBAR=supBBAR
3 infpr ROrABABAsupBBAR=ifBRBBB
4 3 3anidm23 ROrABAsupBBAR=ifBRBBB
5 2 4 eqtrid ROrABAsupBAR=ifBRBBB
6 ifid ifBRBBB=B
7 5 6 eqtrdi ROrABAsupBAR=B