Metamath Proof Explorer


Theorem infpr

Description: The infimum of a pair. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion infpr ROrABACAsupBCAR=ifBRCBC

Proof

Step Hyp Ref Expression
1 simp1 ROrABACAROrA
2 ifcl BACAifBRCBCA
3 2 3adant1 ROrABACAifBRCBCA
4 ifpr BACAifBRCBCBC
5 4 3adant1 ROrABACAifBRCBCBC
6 breq2 B=ifBRCBCBRBBRifBRCBC
7 6 notbid B=ifBRCBC¬BRB¬BRifBRCBC
8 breq2 C=ifBRCBCBRCBRifBRCBC
9 8 notbid C=ifBRCBC¬BRC¬BRifBRCBC
10 sonr ROrABA¬BRB
11 10 3adant3 ROrABACA¬BRB
12 11 adantr ROrABACABRC¬BRB
13 simpr ROrABACA¬BRC¬BRC
14 7 9 12 13 ifbothda ROrABACA¬BRifBRCBC
15 breq2 B=ifBRCBCCRBCRifBRCBC
16 15 notbid B=ifBRCBC¬CRB¬CRifBRCBC
17 breq2 C=ifBRCBCCRCCRifBRCBC
18 17 notbid C=ifBRCBC¬CRC¬CRifBRCBC
19 so2nr ROrABACA¬BRCCRB
20 19 3impb ROrABACA¬BRCCRB
21 imnan BRC¬CRB¬BRCCRB
22 20 21 sylibr ROrABACABRC¬CRB
23 22 imp ROrABACABRC¬CRB
24 sonr ROrACA¬CRC
25 24 3adant2 ROrABACA¬CRC
26 25 adantr ROrABACA¬BRC¬CRC
27 16 18 23 26 ifbothda ROrABACA¬CRifBRCBC
28 breq1 y=ByRifBRCBCBRifBRCBC
29 28 notbid y=B¬yRifBRCBC¬BRifBRCBC
30 breq1 y=CyRifBRCBCCRifBRCBC
31 30 notbid y=C¬yRifBRCBC¬CRifBRCBC
32 29 31 ralprg BACAyBC¬yRifBRCBC¬BRifBRCBC¬CRifBRCBC
33 32 3adant1 ROrABACAyBC¬yRifBRCBC¬BRifBRCBC¬CRifBRCBC
34 14 27 33 mpbir2and ROrABACAyBC¬yRifBRCBC
35 34 r19.21bi ROrABACAyBC¬yRifBRCBC
36 1 3 5 35 infmin ROrABACAsupBCAR=ifBRCBC