Metamath Proof Explorer


Theorem infmin

Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infmin.1 φROrA
infmin.2 φCA
infmin.3 φCB
infmin.4 φyB¬yRC
Assertion infmin φsupBAR=C

Proof

Step Hyp Ref Expression
1 infmin.1 φROrA
2 infmin.2 φCA
3 infmin.3 φCB
4 infmin.4 φyB¬yRC
5 simprr φyACRyCRy
6 breq1 z=CzRyCRy
7 6 rspcev CBCRyzBzRy
8 3 5 7 syl2an2r φyACRyzBzRy
9 1 2 4 8 eqinfd φsupBAR=C