| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsn2 |
|- { B } = { B , B } |
| 2 |
1
|
infeq1i |
|- inf ( { B } , A , R ) = inf ( { B , B } , A , R ) |
| 3 |
|
infpr |
|- ( ( R Or A /\ B e. A /\ B e. A ) -> inf ( { B , B } , A , R ) = if ( B R B , B , B ) ) |
| 4 |
3
|
3anidm23 |
|- ( ( R Or A /\ B e. A ) -> inf ( { B , B } , A , R ) = if ( B R B , B , B ) ) |
| 5 |
2 4
|
eqtrid |
|- ( ( R Or A /\ B e. A ) -> inf ( { B } , A , R ) = if ( B R B , B , B ) ) |
| 6 |
|
ifid |
|- if ( B R B , B , B ) = B |
| 7 |
5 6
|
eqtrdi |
|- ( ( R Or A /\ B e. A ) -> inf ( { B } , A , R ) = B ) |