Step |
Hyp |
Ref |
Expression |
1 |
|
limsuppnfdlem.a |
|- ( ph -> A C_ RR ) |
2 |
|
limsuppnfdlem.f |
|- ( ph -> F : A --> RR* ) |
3 |
|
limsuppnfdlem.u |
|- ( ph -> A. x e. RR A. k e. RR E. j e. A ( k <_ j /\ x <_ ( F ` j ) ) ) |
4 |
|
limsuppnfdlem.g |
|- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
5 |
|
reex |
|- RR e. _V |
6 |
5
|
a1i |
|- ( ph -> RR e. _V ) |
7 |
6 1
|
ssexd |
|- ( ph -> A e. _V ) |
8 |
2 7
|
fexd |
|- ( ph -> F e. _V ) |
9 |
4
|
limsupval |
|- ( F e. _V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
11 |
2
|
ffund |
|- ( ph -> Fun F ) |
12 |
11
|
adantr |
|- ( ( ph /\ j e. A ) -> Fun F ) |
13 |
|
simpr |
|- ( ( ph /\ j e. A ) -> j e. A ) |
14 |
2
|
fdmd |
|- ( ph -> dom F = A ) |
15 |
14
|
adantr |
|- ( ( ph /\ j e. A ) -> dom F = A ) |
16 |
13 15
|
eleqtrrd |
|- ( ( ph /\ j e. A ) -> j e. dom F ) |
17 |
12 16
|
jca |
|- ( ( ph /\ j e. A ) -> ( Fun F /\ j e. dom F ) ) |
18 |
17
|
ad4ant13 |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> ( Fun F /\ j e. dom F ) ) |
19 |
|
simpllr |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> k e. RR ) |
20 |
19
|
rexrd |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> k e. RR* ) |
21 |
|
pnfxr |
|- +oo e. RR* |
22 |
21
|
a1i |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> +oo e. RR* ) |
23 |
1
|
ssrexr |
|- ( ph -> A C_ RR* ) |
24 |
23
|
sselda |
|- ( ( ph /\ j e. A ) -> j e. RR* ) |
25 |
24
|
ad4ant13 |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> j e. RR* ) |
26 |
|
simpr |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> k <_ j ) |
27 |
1
|
sselda |
|- ( ( ph /\ j e. A ) -> j e. RR ) |
28 |
27
|
ltpnfd |
|- ( ( ph /\ j e. A ) -> j < +oo ) |
29 |
28
|
ad4ant13 |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> j < +oo ) |
30 |
20 22 25 26 29
|
elicod |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> j e. ( k [,) +oo ) ) |
31 |
|
funfvima |
|- ( ( Fun F /\ j e. dom F ) -> ( j e. ( k [,) +oo ) -> ( F ` j ) e. ( F " ( k [,) +oo ) ) ) ) |
32 |
18 30 31
|
sylc |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> ( F ` j ) e. ( F " ( k [,) +oo ) ) ) |
33 |
2
|
ffvelrnda |
|- ( ( ph /\ j e. A ) -> ( F ` j ) e. RR* ) |
34 |
33
|
ad4ant13 |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> ( F ` j ) e. RR* ) |
35 |
32 34
|
elind |
|- ( ( ( ( ph /\ k e. RR ) /\ j e. A ) /\ k <_ j ) -> ( F ` j ) e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
36 |
35
|
adantllr |
|- ( ( ( ( ( ph /\ k e. RR ) /\ x e. RR ) /\ j e. A ) /\ k <_ j ) -> ( F ` j ) e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
37 |
36
|
adantrr |
|- ( ( ( ( ( ph /\ k e. RR ) /\ x e. RR ) /\ j e. A ) /\ ( k <_ j /\ x <_ ( F ` j ) ) ) -> ( F ` j ) e. ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
38 |
|
simprr |
|- ( ( ( ( ( ph /\ k e. RR ) /\ x e. RR ) /\ j e. A ) /\ ( k <_ j /\ x <_ ( F ` j ) ) ) -> x <_ ( F ` j ) ) |
39 |
|
breq2 |
|- ( y = ( F ` j ) -> ( x <_ y <-> x <_ ( F ` j ) ) ) |
40 |
39
|
rspcev |
|- ( ( ( F ` j ) e. ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ x <_ ( F ` j ) ) -> E. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) x <_ y ) |
41 |
37 38 40
|
syl2anc |
|- ( ( ( ( ( ph /\ k e. RR ) /\ x e. RR ) /\ j e. A ) /\ ( k <_ j /\ x <_ ( F ` j ) ) ) -> E. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) x <_ y ) |
42 |
3
|
r19.21bi |
|- ( ( ph /\ x e. RR ) -> A. k e. RR E. j e. A ( k <_ j /\ x <_ ( F ` j ) ) ) |
43 |
42
|
r19.21bi |
|- ( ( ( ph /\ x e. RR ) /\ k e. RR ) -> E. j e. A ( k <_ j /\ x <_ ( F ` j ) ) ) |
44 |
43
|
an32s |
|- ( ( ( ph /\ k e. RR ) /\ x e. RR ) -> E. j e. A ( k <_ j /\ x <_ ( F ` j ) ) ) |
45 |
41 44
|
r19.29a |
|- ( ( ( ph /\ k e. RR ) /\ x e. RR ) -> E. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) x <_ y ) |
46 |
45
|
ralrimiva |
|- ( ( ph /\ k e. RR ) -> A. x e. RR E. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) x <_ y ) |
47 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
48 |
|
supxrunb3 |
|- ( ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* -> ( A. x e. RR E. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) x <_ y <-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = +oo ) ) |
49 |
47 48
|
mp1i |
|- ( ( ph /\ k e. RR ) -> ( A. x e. RR E. y e. ( ( F " ( k [,) +oo ) ) i^i RR* ) x <_ y <-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = +oo ) ) |
50 |
46 49
|
mpbid |
|- ( ( ph /\ k e. RR ) -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = +oo ) |
51 |
50
|
mpteq2dva |
|- ( ph -> ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> +oo ) ) |
52 |
4 51
|
eqtrid |
|- ( ph -> G = ( k e. RR |-> +oo ) ) |
53 |
52
|
rneqd |
|- ( ph -> ran G = ran ( k e. RR |-> +oo ) ) |
54 |
|
eqid |
|- ( k e. RR |-> +oo ) = ( k e. RR |-> +oo ) |
55 |
|
ren0 |
|- RR =/= (/) |
56 |
55
|
a1i |
|- ( ph -> RR =/= (/) ) |
57 |
54 56
|
rnmptc |
|- ( ph -> ran ( k e. RR |-> +oo ) = { +oo } ) |
58 |
53 57
|
eqtrd |
|- ( ph -> ran G = { +oo } ) |
59 |
58
|
infeq1d |
|- ( ph -> inf ( ran G , RR* , < ) = inf ( { +oo } , RR* , < ) ) |
60 |
|
xrltso |
|- < Or RR* |
61 |
|
infsn |
|- ( ( < Or RR* /\ +oo e. RR* ) -> inf ( { +oo } , RR* , < ) = +oo ) |
62 |
60 21 61
|
mp2an |
|- inf ( { +oo } , RR* , < ) = +oo |
63 |
62
|
a1i |
|- ( ph -> inf ( { +oo } , RR* , < ) = +oo ) |
64 |
10 59 63
|
3eqtrd |
|- ( ph -> ( limsup ` F ) = +oo ) |