Metamath Proof Explorer


Theorem limsuppnfdlem

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnfdlem.a ( 𝜑𝐴 ⊆ ℝ )
limsuppnfdlem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
limsuppnfdlem.u ( 𝜑 → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
limsuppnfdlem.g 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
Assertion limsuppnfdlem ( 𝜑 → ( lim sup ‘ 𝐹 ) = +∞ )

Proof

Step Hyp Ref Expression
1 limsuppnfdlem.a ( 𝜑𝐴 ⊆ ℝ )
2 limsuppnfdlem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
3 limsuppnfdlem.u ( 𝜑 → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
4 limsuppnfdlem.g 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
5 reex ℝ ∈ V
6 5 a1i ( 𝜑 → ℝ ∈ V )
7 6 1 ssexd ( 𝜑𝐴 ∈ V )
8 2 7 fexd ( 𝜑𝐹 ∈ V )
9 4 limsupval ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )
10 8 9 syl ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )
11 2 ffund ( 𝜑 → Fun 𝐹 )
12 11 adantr ( ( 𝜑𝑗𝐴 ) → Fun 𝐹 )
13 simpr ( ( 𝜑𝑗𝐴 ) → 𝑗𝐴 )
14 2 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
15 14 adantr ( ( 𝜑𝑗𝐴 ) → dom 𝐹 = 𝐴 )
16 13 15 eleqtrrd ( ( 𝜑𝑗𝐴 ) → 𝑗 ∈ dom 𝐹 )
17 12 16 jca ( ( 𝜑𝑗𝐴 ) → ( Fun 𝐹𝑗 ∈ dom 𝐹 ) )
18 17 ad4ant13 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( Fun 𝐹𝑗 ∈ dom 𝐹 ) )
19 simpllr ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑘 ∈ ℝ )
20 19 rexrd ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑘 ∈ ℝ* )
21 pnfxr +∞ ∈ ℝ*
22 21 a1i ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → +∞ ∈ ℝ* )
23 1 ssrexr ( 𝜑𝐴 ⊆ ℝ* )
24 23 sselda ( ( 𝜑𝑗𝐴 ) → 𝑗 ∈ ℝ* )
25 24 ad4ant13 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗 ∈ ℝ* )
26 simpr ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑘𝑗 )
27 1 sselda ( ( 𝜑𝑗𝐴 ) → 𝑗 ∈ ℝ )
28 27 ltpnfd ( ( 𝜑𝑗𝐴 ) → 𝑗 < +∞ )
29 28 ad4ant13 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗 < +∞ )
30 20 22 25 26 29 elicod ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) )
31 funfvima ( ( Fun 𝐹𝑗 ∈ dom 𝐹 ) → ( 𝑗 ∈ ( 𝑘 [,) +∞ ) → ( 𝐹𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) )
32 18 30 31 sylc ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
33 2 ffvelrnda ( ( 𝜑𝑗𝐴 ) → ( 𝐹𝑗 ) ∈ ℝ* )
34 33 ad4ant13 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ∈ ℝ* )
35 32 34 elind ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
36 35 adantllr ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
37 36 adantrr ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ( 𝐹𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
38 simprr ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → 𝑥 ≤ ( 𝐹𝑗 ) )
39 breq2 ( 𝑦 = ( 𝐹𝑗 ) → ( 𝑥𝑦𝑥 ≤ ( 𝐹𝑗 ) ) )
40 39 rspcev ( ( ( 𝐹𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝑦 )
41 37 38 40 syl2anc ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) ) → ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝑦 )
42 3 r19.21bi ( ( 𝜑𝑥 ∈ ℝ ) → ∀ 𝑘 ∈ ℝ ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
43 42 r19.21bi ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
44 43 an32s ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗𝐴 ( 𝑘𝑗𝑥 ≤ ( 𝐹𝑗 ) ) )
45 41 44 r19.29a ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝑦 )
46 45 ralrimiva ( ( 𝜑𝑘 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝑦 )
47 inss2 ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
48 supxrunb3 ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝑦 ↔ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = +∞ ) )
49 47 48 mp1i ( ( 𝜑𝑘 ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝑦 ↔ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = +∞ ) )
50 46 49 mpbid ( ( 𝜑𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = +∞ )
51 50 mpteq2dva ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ +∞ ) )
52 4 51 syl5eq ( 𝜑𝐺 = ( 𝑘 ∈ ℝ ↦ +∞ ) )
53 52 rneqd ( 𝜑 → ran 𝐺 = ran ( 𝑘 ∈ ℝ ↦ +∞ ) )
54 eqid ( 𝑘 ∈ ℝ ↦ +∞ ) = ( 𝑘 ∈ ℝ ↦ +∞ )
55 ren0 ℝ ≠ ∅
56 55 a1i ( 𝜑 → ℝ ≠ ∅ )
57 54 56 rnmptc ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ +∞ ) = { +∞ } )
58 53 57 eqtrd ( 𝜑 → ran 𝐺 = { +∞ } )
59 58 infeq1d ( 𝜑 → inf ( ran 𝐺 , ℝ* , < ) = inf ( { +∞ } , ℝ* , < ) )
60 xrltso < Or ℝ*
61 infsn ( ( < Or ℝ* ∧ +∞ ∈ ℝ* ) → inf ( { +∞ } , ℝ* , < ) = +∞ )
62 60 21 61 mp2an inf ( { +∞ } , ℝ* , < ) = +∞
63 62 a1i ( 𝜑 → inf ( { +∞ } , ℝ* , < ) = +∞ )
64 10 59 63 3eqtrd ( 𝜑 → ( lim sup ‘ 𝐹 ) = +∞ )