| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsuppnfdlem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 2 |
|
limsuppnfdlem.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 3 |
|
limsuppnfdlem.u |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 4 |
|
limsuppnfdlem.g |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 5 |
|
reex |
⊢ ℝ ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 7 |
6 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 8 |
2 7
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 9 |
4
|
limsupval |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
| 11 |
2
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Fun 𝐹 ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ 𝐴 ) |
| 14 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → dom 𝐹 = 𝐴 ) |
| 16 |
13 15
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ dom 𝐹 ) |
| 17 |
12 16
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹 ) ) |
| 18 |
17
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹 ) ) |
| 19 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ∈ ℝ ) |
| 20 |
19
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ∈ ℝ* ) |
| 21 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 22 |
21
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → +∞ ∈ ℝ* ) |
| 23 |
1
|
ssrexr |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 24 |
23
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ℝ* ) |
| 25 |
24
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ℝ* ) |
| 26 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) |
| 27 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ℝ ) |
| 28 |
27
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 < +∞ ) |
| 29 |
28
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 < +∞ ) |
| 30 |
20 22 25 26 29
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) ) |
| 31 |
|
funfvima |
⊢ ( ( Fun 𝐹 ∧ 𝑗 ∈ dom 𝐹 ) → ( 𝑗 ∈ ( 𝑘 [,) +∞ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) ) |
| 32 |
18 30 31
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 33 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 34 |
33
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 35 |
32 34
|
elind |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 36 |
35
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 37 |
36
|
adantrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 38 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 39 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑗 ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 40 |
39
|
rspcev |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝑦 ) |
| 41 |
37 38 40
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) → ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝑦 ) |
| 42 |
3
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 43 |
42
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 44 |
43
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 45 |
41 44
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝑦 ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝑦 ) |
| 47 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
| 48 |
|
supxrunb3 |
⊢ ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝑦 ↔ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = +∞ ) ) |
| 49 |
47 48
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝑦 ↔ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = +∞ ) ) |
| 50 |
46 49
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = +∞ ) |
| 51 |
50
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ +∞ ) ) |
| 52 |
4 51
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑘 ∈ ℝ ↦ +∞ ) ) |
| 53 |
52
|
rneqd |
⊢ ( 𝜑 → ran 𝐺 = ran ( 𝑘 ∈ ℝ ↦ +∞ ) ) |
| 54 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ +∞ ) = ( 𝑘 ∈ ℝ ↦ +∞ ) |
| 55 |
|
ren0 |
⊢ ℝ ≠ ∅ |
| 56 |
55
|
a1i |
⊢ ( 𝜑 → ℝ ≠ ∅ ) |
| 57 |
54 56
|
rnmptc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ ℝ ↦ +∞ ) = { +∞ } ) |
| 58 |
53 57
|
eqtrd |
⊢ ( 𝜑 → ran 𝐺 = { +∞ } ) |
| 59 |
58
|
infeq1d |
⊢ ( 𝜑 → inf ( ran 𝐺 , ℝ* , < ) = inf ( { +∞ } , ℝ* , < ) ) |
| 60 |
|
xrltso |
⊢ < Or ℝ* |
| 61 |
|
infsn |
⊢ ( ( < Or ℝ* ∧ +∞ ∈ ℝ* ) → inf ( { +∞ } , ℝ* , < ) = +∞ ) |
| 62 |
60 21 61
|
mp2an |
⊢ inf ( { +∞ } , ℝ* , < ) = +∞ |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → inf ( { +∞ } , ℝ* , < ) = +∞ ) |
| 64 |
10 59 63
|
3eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = +∞ ) |