Metamath Proof Explorer


Theorem limsuppnfd

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnfd.j _ j F
limsuppnfd.a φ A
limsuppnfd.f φ F : A *
limsuppnfd.u φ x k j A k j x F j
Assertion limsuppnfd φ lim sup F = +∞

Proof

Step Hyp Ref Expression
1 limsuppnfd.j _ j F
2 limsuppnfd.a φ A
3 limsuppnfd.f φ F : A *
4 limsuppnfd.u φ x k j A k j x F j
5 breq1 x = y x F j y F j
6 5 anbi2d x = y k j x F j k j y F j
7 6 rexbidv x = y j A k j x F j j A k j y F j
8 breq1 k = i k j i j
9 8 anbi1d k = i k j y F j i j y F j
10 9 rexbidv k = i j A k j y F j j A i j y F j
11 nfv l i j y F j
12 nfv j i l
13 nfcv _ j y
14 nfcv _ j
15 nfcv _ j l
16 1 15 nffv _ j F l
17 13 14 16 nfbr j y F l
18 12 17 nfan j i l y F l
19 breq2 j = l i j i l
20 fveq2 j = l F j = F l
21 20 breq2d j = l y F j y F l
22 19 21 anbi12d j = l i j y F j i l y F l
23 11 18 22 cbvrexw j A i j y F j l A i l y F l
24 23 a1i k = i j A i j y F j l A i l y F l
25 10 24 bitrd k = i j A k j y F j l A i l y F l
26 7 25 cbvral2vw x k j A k j x F j y i l A i l y F l
27 4 26 sylib φ y i l A i l y F l
28 eqid i sup F i +∞ * * < = i sup F i +∞ * * <
29 2 3 27 28 limsuppnfdlem φ lim sup F = +∞