Step |
Hyp |
Ref |
Expression |
1 |
|
limsupresico.1 |
|- ( ph -> M e. RR ) |
2 |
|
limsupresico.2 |
|- Z = ( M [,) +oo ) |
3 |
|
limsupresico.3 |
|- ( ph -> F e. V ) |
4 |
1
|
rexrd |
|- ( ph -> M e. RR* ) |
5 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> M e. RR* ) |
6 |
|
pnfxr |
|- +oo e. RR* |
7 |
6
|
a1i |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> +oo e. RR* ) |
8 |
|
ressxr |
|- RR C_ RR* |
9 |
6
|
a1i |
|- ( ph -> +oo e. RR* ) |
10 |
|
icossre |
|- ( ( M e. RR /\ +oo e. RR* ) -> ( M [,) +oo ) C_ RR ) |
11 |
1 9 10
|
syl2anc |
|- ( ph -> ( M [,) +oo ) C_ RR ) |
12 |
11
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( M [,) +oo ) C_ RR ) |
13 |
2
|
eleq2i |
|- ( k e. Z <-> k e. ( M [,) +oo ) ) |
14 |
13
|
biimpi |
|- ( k e. Z -> k e. ( M [,) +oo ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. ( M [,) +oo ) ) |
16 |
12 15
|
sseldd |
|- ( ( ph /\ k e. Z ) -> k e. RR ) |
17 |
16
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> k e. RR ) |
18 |
|
simpr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> y e. ( k [,) +oo ) ) |
19 |
|
elicore |
|- ( ( k e. RR /\ y e. ( k [,) +oo ) ) -> y e. RR ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> y e. RR ) |
21 |
8 20
|
sselid |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> y e. RR* ) |
22 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> M e. RR ) |
23 |
4
|
adantr |
|- ( ( ph /\ k e. Z ) -> M e. RR* ) |
24 |
6
|
a1i |
|- ( ( ph /\ k e. Z ) -> +oo e. RR* ) |
25 |
23 24 15
|
icogelbd |
|- ( ( ph /\ k e. Z ) -> M <_ k ) |
26 |
25
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> M <_ k ) |
27 |
8 17
|
sselid |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> k e. RR* ) |
28 |
27 7 18
|
icogelbd |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> k <_ y ) |
29 |
22 17 20 26 28
|
letrd |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> M <_ y ) |
30 |
20
|
ltpnfd |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> y < +oo ) |
31 |
5 7 21 29 30
|
elicod |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> y e. ( M [,) +oo ) ) |
32 |
31 2
|
eleqtrrdi |
|- ( ( ( ph /\ k e. Z ) /\ y e. ( k [,) +oo ) ) -> y e. Z ) |
33 |
32
|
ssd |
|- ( ( ph /\ k e. Z ) -> ( k [,) +oo ) C_ Z ) |
34 |
|
resima2 |
|- ( ( k [,) +oo ) C_ Z -> ( ( F |` Z ) " ( k [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
35 |
33 34
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( F |` Z ) " ( k [,) +oo ) ) = ( F " ( k [,) +oo ) ) ) |
36 |
35
|
ineq1d |
|- ( ( ph /\ k e. Z ) -> ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
37 |
36
|
supeq1d |
|- ( ( ph /\ k e. Z ) -> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
38 |
37
|
mpteq2dva |
|- ( ph -> ( k e. Z |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. Z |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
39 |
38
|
rneqd |
|- ( ph -> ran ( k e. Z |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( k e. Z |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
40 |
2 11
|
eqsstrid |
|- ( ph -> Z C_ RR ) |
41 |
40
|
mptima2 |
|- ( ph -> ( ( k e. RR |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) = ran ( k e. Z |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
42 |
40
|
mptima2 |
|- ( ph -> ( ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) = ran ( k e. Z |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
43 |
39 41 42
|
3eqtr4d |
|- ( ph -> ( ( k e. RR |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) = ( ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) ) |
44 |
43
|
infeq1d |
|- ( ph -> inf ( ( ( k e. RR |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) , RR* , < ) = inf ( ( ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) , RR* , < ) ) |
45 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
46 |
3
|
resexd |
|- ( ph -> ( F |` Z ) e. _V ) |
47 |
2
|
supeq1i |
|- sup ( Z , RR* , < ) = sup ( ( M [,) +oo ) , RR* , < ) |
48 |
47
|
a1i |
|- ( ph -> sup ( Z , RR* , < ) = sup ( ( M [,) +oo ) , RR* , < ) ) |
49 |
1
|
renepnfd |
|- ( ph -> M =/= +oo ) |
50 |
|
icopnfsup |
|- ( ( M e. RR* /\ M =/= +oo ) -> sup ( ( M [,) +oo ) , RR* , < ) = +oo ) |
51 |
4 49 50
|
syl2anc |
|- ( ph -> sup ( ( M [,) +oo ) , RR* , < ) = +oo ) |
52 |
48 51
|
eqtrd |
|- ( ph -> sup ( Z , RR* , < ) = +oo ) |
53 |
45 46 40 52
|
limsupval2 |
|- ( ph -> ( limsup ` ( F |` Z ) ) = inf ( ( ( k e. RR |-> sup ( ( ( ( F |` Z ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) , RR* , < ) ) |
54 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
55 |
54 3 40 52
|
limsupval2 |
|- ( ph -> ( limsup ` F ) = inf ( ( ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) , RR* , < ) ) |
56 |
44 53 55
|
3eqtr4d |
|- ( ph -> ( limsup ` ( F |` Z ) ) = ( limsup ` F ) ) |