Description: If the limsup is not +oo , then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupub.j | |
|
limsupub.e | |
||
limsupub.a | |
||
limsupub.f | |
||
limsupub.n | |
||
Assertion | limsupub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupub.j | |
|
2 | limsupub.e | |
|
3 | limsupub.a | |
|
4 | limsupub.f | |
|
5 | limsupub.n | |
|
6 | 3 | adantr | |
7 | 4 | adantr | |
8 | nfv | |
|
9 | 1 8 | nfan | |
10 | simprl | |
|
11 | simpllr | |
|
12 | rexr | |
|
13 | 11 12 | syl | |
14 | 4 | ffvelcdmda | |
15 | 14 | ad4ant13 | |
16 | simpr | |
|
17 | 13 15 16 | xrltled | |
18 | 17 | adantrl | |
19 | 10 18 | jca | |
20 | 19 | ex | |
21 | 20 | ex | |
22 | 9 21 | reximdai | |
23 | 22 | ralimdv | |
24 | 23 | ralimdva | |
25 | 24 | imp | |
26 | 2 6 7 25 | limsuppnfd | |
27 | 5 | neneqd | |
28 | 27 | adantr | |
29 | 26 28 | pm2.65da | |
30 | imnan | |
|
31 | 30 | ralbii | |
32 | ralnex | |
|
33 | 31 32 | bitri | |
34 | 33 | rexbii | |
35 | rexnal | |
|
36 | 34 35 | bitri | |
37 | 36 | rexbii | |
38 | rexnal | |
|
39 | 37 38 | bitri | |
40 | 29 39 | sylibr | |
41 | nfv | |
|
42 | 9 41 | nfan | |
43 | 14 | ad4ant14 | |
44 | simpllr | |
|
45 | 44 | rexrd | |
46 | 43 45 | xrlenltd | |
47 | 46 | imbi2d | |
48 | 42 47 | ralbida | |
49 | 48 | rexbidva | |
50 | 49 | rexbidva | |
51 | 40 50 | mpbird | |