| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupub.j |
|
| 2 |
|
limsupub.e |
|
| 3 |
|
limsupub.a |
|
| 4 |
|
limsupub.f |
|
| 5 |
|
limsupub.n |
|
| 6 |
3
|
adantr |
|
| 7 |
4
|
adantr |
|
| 8 |
|
nfv |
|
| 9 |
1 8
|
nfan |
|
| 10 |
|
simprl |
|
| 11 |
|
simpllr |
|
| 12 |
|
rexr |
|
| 13 |
11 12
|
syl |
|
| 14 |
4
|
ffvelcdmda |
|
| 15 |
14
|
ad4ant13 |
|
| 16 |
|
simpr |
|
| 17 |
13 15 16
|
xrltled |
|
| 18 |
17
|
adantrl |
|
| 19 |
10 18
|
jca |
|
| 20 |
19
|
ex |
|
| 21 |
20
|
ex |
|
| 22 |
9 21
|
reximdai |
|
| 23 |
22
|
ralimdv |
|
| 24 |
23
|
ralimdva |
|
| 25 |
24
|
imp |
|
| 26 |
2 6 7 25
|
limsuppnfd |
|
| 27 |
5
|
neneqd |
|
| 28 |
27
|
adantr |
|
| 29 |
26 28
|
pm2.65da |
|
| 30 |
|
imnan |
|
| 31 |
30
|
ralbii |
|
| 32 |
|
ralnex |
|
| 33 |
31 32
|
bitri |
|
| 34 |
33
|
rexbii |
|
| 35 |
|
rexnal |
|
| 36 |
34 35
|
bitri |
|
| 37 |
36
|
rexbii |
|
| 38 |
|
rexnal |
|
| 39 |
37 38
|
bitri |
|
| 40 |
29 39
|
sylibr |
|
| 41 |
|
nfv |
|
| 42 |
9 41
|
nfan |
|
| 43 |
14
|
ad4ant14 |
|
| 44 |
|
simpllr |
|
| 45 |
44
|
rexrd |
|
| 46 |
43 45
|
xrlenltd |
|
| 47 |
46
|
imbi2d |
|
| 48 |
42 47
|
ralbida |
|
| 49 |
48
|
rexbidva |
|
| 50 |
49
|
rexbidva |
|
| 51 |
40 50
|
mpbird |
|