Metamath Proof Explorer


Theorem limsupub

Description: If the limsup is not +oo , then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupub.j jφ
limsupub.e _jF
limsupub.a φA
limsupub.f φF:A*
limsupub.n φlim supF+∞
Assertion limsupub φxkjAkjFjx

Proof

Step Hyp Ref Expression
1 limsupub.j jφ
2 limsupub.e _jF
3 limsupub.a φA
4 limsupub.f φF:A*
5 limsupub.n φlim supF+∞
6 3 adantr φxkjAkjx<FjA
7 4 adantr φxkjAkjx<FjF:A*
8 nfv jx
9 1 8 nfan jφx
10 simprl φxjAkjx<Fjkj
11 simpllr φxjAx<Fjx
12 rexr xx*
13 11 12 syl φxjAx<Fjx*
14 4 ffvelcdmda φjAFj*
15 14 ad4ant13 φxjAx<FjFj*
16 simpr φxjAx<Fjx<Fj
17 13 15 16 xrltled φxjAx<FjxFj
18 17 adantrl φxjAkjx<FjxFj
19 10 18 jca φxjAkjx<FjkjxFj
20 19 ex φxjAkjx<FjkjxFj
21 20 ex φxjAkjx<FjkjxFj
22 9 21 reximdai φxjAkjx<FjjAkjxFj
23 22 ralimdv φxkjAkjx<FjkjAkjxFj
24 23 ralimdva φxkjAkjx<FjxkjAkjxFj
25 24 imp φxkjAkjx<FjxkjAkjxFj
26 2 6 7 25 limsuppnfd φxkjAkjx<Fjlim supF=+∞
27 5 neneqd φ¬lim supF=+∞
28 27 adantr φxkjAkjx<Fj¬lim supF=+∞
29 26 28 pm2.65da φ¬xkjAkjx<Fj
30 imnan kj¬x<Fj¬kjx<Fj
31 30 ralbii jAkj¬x<FjjA¬kjx<Fj
32 ralnex jA¬kjx<Fj¬jAkjx<Fj
33 31 32 bitri jAkj¬x<Fj¬jAkjx<Fj
34 33 rexbii kjAkj¬x<Fjk¬jAkjx<Fj
35 rexnal k¬jAkjx<Fj¬kjAkjx<Fj
36 34 35 bitri kjAkj¬x<Fj¬kjAkjx<Fj
37 36 rexbii xkjAkj¬x<Fjx¬kjAkjx<Fj
38 rexnal x¬kjAkjx<Fj¬xkjAkjx<Fj
39 37 38 bitri xkjAkj¬x<Fj¬xkjAkjx<Fj
40 29 39 sylibr φxkjAkj¬x<Fj
41 nfv jk
42 9 41 nfan jφxk
43 14 ad4ant14 φxkjAFj*
44 simpllr φxkjAx
45 44 rexrd φxkjAx*
46 43 45 xrlenltd φxkjAFjx¬x<Fj
47 46 imbi2d φxkjAkjFjxkj¬x<Fj
48 42 47 ralbida φxkjAkjFjxjAkj¬x<Fj
49 48 rexbidva φxkjAkjFjxkjAkj¬x<Fj
50 49 rexbidva φxkjAkjFjxxkjAkj¬x<Fj
51 40 50 mpbird φxkjAkjFjx