Metamath Proof Explorer


Theorem limsupres

Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupres.1 φ F V
Assertion limsupres φ lim sup F C lim sup F

Proof

Step Hyp Ref Expression
1 limsupres.1 φ F V
2 nfv k φ
3 resimass F C k +∞ F k +∞
4 3 a1i k F C k +∞ F k +∞
5 4 ssrind k F C k +∞ * F k +∞ *
6 5 adantl φ k F C k +∞ * F k +∞ *
7 inss2 F k +∞ * *
8 7 a1i φ k F k +∞ * *
9 6 8 sstrd φ k F C k +∞ * *
10 9 supxrcld φ k sup F C k +∞ * * < *
11 8 supxrcld φ k sup F k +∞ * * < *
12 supxrss F C k +∞ * F k +∞ * F k +∞ * * sup F C k +∞ * * < sup F k +∞ * * <
13 6 8 12 syl2anc φ k sup F C k +∞ * * < sup F k +∞ * * <
14 2 10 11 13 infrnmptle φ sup ran k sup F C k +∞ * * < * < sup ran k sup F k +∞ * * < * <
15 1 resexd φ F C V
16 eqid k sup F C k +∞ * * < = k sup F C k +∞ * * <
17 16 limsupval F C V lim sup F C = sup ran k sup F C k +∞ * * < * <
18 15 17 syl φ lim sup F C = sup ran k sup F C k +∞ * * < * <
19 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
20 19 limsupval F V lim sup F = sup ran k sup F k +∞ * * < * <
21 1 20 syl φ lim sup F = sup ran k sup F k +∞ * * < * <
22 18 21 breq12d φ lim sup F C lim sup F sup ran k sup F C k +∞ * * < * < sup ran k sup F k +∞ * * < * <
23 14 22 mpbird φ lim sup F C lim sup F