| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupres.1 |
|- ( ph -> F e. V ) |
| 2 |
|
nfv |
|- F/ k ph |
| 3 |
|
resimass |
|- ( ( F |` C ) " ( k [,) +oo ) ) C_ ( F " ( k [,) +oo ) ) |
| 4 |
3
|
a1i |
|- ( k e. RR -> ( ( F |` C ) " ( k [,) +oo ) ) C_ ( F " ( k [,) +oo ) ) ) |
| 5 |
4
|
ssrind |
|- ( k e. RR -> ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 6 |
5
|
adantl |
|- ( ( ph /\ k e. RR ) -> ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F " ( k [,) +oo ) ) i^i RR* ) ) |
| 7 |
|
inss2 |
|- ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* |
| 8 |
7
|
a1i |
|- ( ( ph /\ k e. RR ) -> ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 9 |
6 8
|
sstrd |
|- ( ( ph /\ k e. RR ) -> ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) |
| 10 |
9
|
supxrcld |
|- ( ( ph /\ k e. RR ) -> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 11 |
8
|
supxrcld |
|- ( ( ph /\ k e. RR ) -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
| 12 |
|
supxrss |
|- ( ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) C_ ( ( F " ( k [,) +oo ) ) i^i RR* ) /\ ( ( F " ( k [,) +oo ) ) i^i RR* ) C_ RR* ) -> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 13 |
6 8 12
|
syl2anc |
|- ( ( ph /\ k e. RR ) -> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 14 |
2 10 11 13
|
infrnmptle |
|- ( ph -> inf ( ran ( k e. RR |-> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 15 |
1
|
resexd |
|- ( ph -> ( F |` C ) e. _V ) |
| 16 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 17 |
16
|
limsupval |
|- ( ( F |` C ) e. _V -> ( limsup ` ( F |` C ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 18 |
15 17
|
syl |
|- ( ph -> ( limsup ` ( F |` C ) ) = inf ( ran ( k e. RR |-> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 19 |
|
eqid |
|- ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 20 |
19
|
limsupval |
|- ( F e. V -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 21 |
1 20
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 22 |
18 21
|
breq12d |
|- ( ph -> ( ( limsup ` ( F |` C ) ) <_ ( limsup ` F ) <-> inf ( ran ( k e. RR |-> sup ( ( ( ( F |` C ) " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) <_ inf ( ran ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) ) |
| 23 |
14 22
|
mpbird |
|- ( ph -> ( limsup ` ( F |` C ) ) <_ ( limsup ` F ) ) |