Metamath Proof Explorer


Theorem limsupres

Description: The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupres.1 ( 𝜑𝐹𝑉 )
Assertion limsupres ( 𝜑 → ( lim sup ‘ ( 𝐹𝐶 ) ) ≤ ( lim sup ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 limsupres.1 ( 𝜑𝐹𝑉 )
2 nfv 𝑘 𝜑
3 resimass ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) )
4 3 a1i ( 𝑘 ∈ ℝ → ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
5 4 ssrind ( 𝑘 ∈ ℝ → ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
6 5 adantl ( ( 𝜑𝑘 ∈ ℝ ) → ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
7 inss2 ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
8 7 a1i ( ( 𝜑𝑘 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* )
9 6 8 sstrd ( ( 𝜑𝑘 ∈ ℝ ) → ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* )
10 9 supxrcld ( ( 𝜑𝑘 ∈ ℝ ) → sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
11 8 supxrcld ( ( 𝜑𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
12 supxrss ( ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) → sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
13 6 8 12 syl2anc ( ( 𝜑𝑘 ∈ ℝ ) → sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
14 2 10 11 13 infrnmptle ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ≤ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
15 1 resexd ( 𝜑 → ( 𝐹𝐶 ) ∈ V )
16 eqid ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
17 16 limsupval ( ( 𝐹𝐶 ) ∈ V → ( lim sup ‘ ( 𝐹𝐶 ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
18 15 17 syl ( 𝜑 → ( lim sup ‘ ( 𝐹𝐶 ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
19 eqid ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
20 19 limsupval ( 𝐹𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
21 1 20 syl ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) )
22 18 21 breq12d ( 𝜑 → ( ( lim sup ‘ ( 𝐹𝐶 ) ) ≤ ( lim sup ‘ 𝐹 ) ↔ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ≤ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) )
23 14 22 mpbird ( 𝜑 → ( lim sup ‘ ( 𝐹𝐶 ) ) ≤ ( lim sup ‘ 𝐹 ) )