| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupres.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 3 |
|
resimass |
⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) |
| 4 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℝ → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 5 |
4
|
ssrind |
⊢ ( 𝑘 ∈ ℝ → ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 7 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
| 8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
| 9 |
6 8
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
| 10 |
9
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
| 11 |
8
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
| 12 |
|
supxrss |
⊢ ( ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ∧ ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) → sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 13 |
6 8 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 14 |
2 10 11 13
|
infrnmptle |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ≤ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 15 |
1
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) ∈ V ) |
| 16 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 17 |
16
|
limsupval |
⊢ ( ( 𝐹 ↾ 𝐶 ) ∈ V → ( lim sup ‘ ( 𝐹 ↾ 𝐶 ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 18 |
15 17
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ 𝐶 ) ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 19 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 20 |
19
|
limsupval |
⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
| 22 |
18 21
|
breq12d |
⊢ ( 𝜑 → ( ( lim sup ‘ ( 𝐹 ↾ 𝐶 ) ) ≤ ( lim sup ‘ 𝐹 ) ↔ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ≤ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) ) |
| 23 |
14 22
|
mpbird |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝐹 ↾ 𝐶 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |