Metamath Proof Explorer


Theorem climinf2lem

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2lem.1 𝑍 = ( ℤ𝑀 )
climinf2lem.2 ( 𝜑𝑀 ∈ ℤ )
climinf2lem.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
climinf2lem.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
climinf2lem.5 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
Assertion climinf2lem ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 climinf2lem.1 𝑍 = ( ℤ𝑀 )
2 climinf2lem.2 ( 𝜑𝑀 ∈ ℤ )
3 climinf2lem.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
4 climinf2lem.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
5 climinf2lem.5 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
6 1 2 3 4 5 climinf ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) )
7 3 frnd ( 𝜑 → ran 𝐹 ⊆ ℝ )
8 3 ffnd ( 𝜑𝐹 Fn 𝑍 )
9 2 1 uzidd2 ( 𝜑𝑀𝑍 )
10 fnfvelrn ( ( 𝐹 Fn 𝑍𝑀𝑍 ) → ( 𝐹𝑀 ) ∈ ran 𝐹 )
11 8 9 10 syl2anc ( 𝜑 → ( 𝐹𝑀 ) ∈ ran 𝐹 )
12 11 ne0d ( 𝜑 → ran 𝐹 ≠ ∅ )
13 simpr ( ( 𝜑𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 )
14 fvelrnb ( 𝐹 Fn 𝑍 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦 ) )
15 8 14 syl ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦 ) )
16 15 adantr ( ( 𝜑𝑦 ∈ ran 𝐹 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦 ) )
17 13 16 mpbid ( ( 𝜑𝑦 ∈ ran 𝐹 ) → ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦 )
18 17 adantlr ( ( ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦 )
19 nfv 𝑘 𝜑
20 nfra1 𝑘𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 )
21 19 20 nfan 𝑘 ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
22 nfv 𝑘 𝑥𝑦
23 rspa ( ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ∧ 𝑘𝑍 ) → 𝑥 ≤ ( 𝐹𝑘 ) )
24 simpl ( ( 𝑥 ≤ ( 𝐹𝑘 ) ∧ ( 𝐹𝑘 ) = 𝑦 ) → 𝑥 ≤ ( 𝐹𝑘 ) )
25 simpr ( ( 𝑥 ≤ ( 𝐹𝑘 ) ∧ ( 𝐹𝑘 ) = 𝑦 ) → ( 𝐹𝑘 ) = 𝑦 )
26 24 25 breqtrd ( ( 𝑥 ≤ ( 𝐹𝑘 ) ∧ ( 𝐹𝑘 ) = 𝑦 ) → 𝑥𝑦 )
27 26 ex ( 𝑥 ≤ ( 𝐹𝑘 ) → ( ( 𝐹𝑘 ) = 𝑦𝑥𝑦 ) )
28 23 27 syl ( ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ∧ 𝑘𝑍 ) → ( ( 𝐹𝑘 ) = 𝑦𝑥𝑦 ) )
29 28 ex ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) → ( 𝑘𝑍 → ( ( 𝐹𝑘 ) = 𝑦𝑥𝑦 ) ) )
30 29 adantl ( ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) → ( 𝑘𝑍 → ( ( 𝐹𝑘 ) = 𝑦𝑥𝑦 ) ) )
31 21 22 30 rexlimd ( ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) → ( ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦𝑥𝑦 ) )
32 31 adantr ( ( ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ∃ 𝑘𝑍 ( 𝐹𝑘 ) = 𝑦𝑥𝑦 ) )
33 18 32 mpd ( ( ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑥𝑦 )
34 33 ralrimiva ( ( 𝜑 ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) → ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 )
35 34 adantlr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ) → ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 )
36 35 ex ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) → ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) )
37 36 reximdva ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) )
38 5 37 mpd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 )
39 infxrre ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥𝑦 ) → inf ( ran 𝐹 , ℝ* , < ) = inf ( ran 𝐹 , ℝ , < ) )
40 7 12 38 39 syl3anc ( 𝜑 → inf ( ran 𝐹 , ℝ* , < ) = inf ( ran 𝐹 , ℝ , < ) )
41 6 40 breqtrrd ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ* , < ) )