Step |
Hyp |
Ref |
Expression |
1 |
|
climinf2lem.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climinf2lem.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climinf2lem.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
climinf2lem.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
5 |
|
climinf2lem.5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
6 |
1 2 3 4 5
|
climinf |
⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |
7 |
3
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
8 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
9 |
2 1
|
uzidd2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
10 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝑀 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ran 𝐹 ) |
12 |
11
|
ne0d |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → 𝑦 ∈ ran 𝐹 ) |
14 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑍 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 ) ) |
15 |
8 14
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 ) ) |
17 |
13 16
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
20 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) |
21 |
19 20
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
22 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ≤ 𝑦 |
23 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑍 ) → 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
24 |
|
simpl |
⊢ ( ( 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑦 ) → 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
25 |
|
simpr |
⊢ ( ( 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑦 ) → ( 𝐹 ‘ 𝑘 ) = 𝑦 ) |
26 |
24 25
|
breqtrd |
⊢ ( ( 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) = 𝑦 ) → 𝑥 ≤ 𝑦 ) |
27 |
26
|
ex |
⊢ ( 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
28 |
23 27
|
syl |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
29 |
28
|
ex |
⊢ ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → ( 𝑘 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑘 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑘 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
31 |
21 22 30
|
rexlimd |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑦 ∈ ran 𝐹 ) → ( ∃ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
33 |
18 32
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑦 ∈ ran 𝐹 ) → 𝑥 ≤ 𝑦 ) |
34 |
33
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
35 |
34
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
36 |
35
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ) |
37 |
36
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) ) |
38 |
5 37
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) |
39 |
|
infxrre |
⊢ ( ( ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐹 𝑥 ≤ 𝑦 ) → inf ( ran 𝐹 , ℝ* , < ) = inf ( ran 𝐹 , ℝ , < ) ) |
40 |
7 12 38 39
|
syl3anc |
⊢ ( 𝜑 → inf ( ran 𝐹 , ℝ* , < ) = inf ( ran 𝐹 , ℝ , < ) ) |
41 |
6 40
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ* , < ) ) |