Metamath Proof Explorer


Theorem climinf2

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2.k 𝑘 𝜑
climinf2.n 𝑘 𝐹
climinf2.z 𝑍 = ( ℤ𝑀 )
climinf2.m ( 𝜑𝑀 ∈ ℤ )
climinf2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
climinf2.l ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
climinf2.e ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
Assertion climinf2 ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 climinf2.k 𝑘 𝜑
2 climinf2.n 𝑘 𝐹
3 climinf2.z 𝑍 = ( ℤ𝑀 )
4 climinf2.m ( 𝜑𝑀 ∈ ℤ )
5 climinf2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
6 climinf2.l ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) )
7 climinf2.e ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) )
8 nfv 𝑘 𝑗𝑍
9 1 8 nfan 𝑘 ( 𝜑𝑗𝑍 )
10 nfcv 𝑘 ( 𝑗 + 1 )
11 2 10 nffv 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) )
12 nfcv 𝑘
13 nfcv 𝑘 𝑗
14 2 13 nffv 𝑘 ( 𝐹𝑗 )
15 11 12 14 nfbr 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 )
16 9 15 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) )
17 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
18 17 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
19 fvoveq1 ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
20 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
21 19 20 breq12d ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) ) )
22 18 21 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹𝑘 ) ) ↔ ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) ) ) )
23 16 22 6 chvarfv ( ( 𝜑𝑗𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹𝑗 ) )
24 breq1 ( 𝑥 = 𝑦 → ( 𝑥 ≤ ( 𝐹𝑘 ) ↔ 𝑦 ≤ ( 𝐹𝑘 ) ) )
25 24 ralbidv ( 𝑥 = 𝑦 → ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑘𝑍 𝑦 ≤ ( 𝐹𝑘 ) ) )
26 nfv 𝑗 𝑦 ≤ ( 𝐹𝑘 )
27 nfcv 𝑘 𝑦
28 27 12 14 nfbr 𝑘 𝑦 ≤ ( 𝐹𝑗 )
29 20 breq2d ( 𝑘 = 𝑗 → ( 𝑦 ≤ ( 𝐹𝑘 ) ↔ 𝑦 ≤ ( 𝐹𝑗 ) ) )
30 26 28 29 cbvralw ( ∀ 𝑘𝑍 𝑦 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑗𝑍 𝑦 ≤ ( 𝐹𝑗 ) )
31 30 a1i ( 𝑥 = 𝑦 → ( ∀ 𝑘𝑍 𝑦 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑗𝑍 𝑦 ≤ ( 𝐹𝑗 ) ) )
32 25 31 bitrd ( 𝑥 = 𝑦 → ( ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ↔ ∀ 𝑗𝑍 𝑦 ≤ ( 𝐹𝑗 ) ) )
33 32 cbvrexvw ( ∃ 𝑥 ∈ ℝ ∀ 𝑘𝑍 𝑥 ≤ ( 𝐹𝑘 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 𝑦 ≤ ( 𝐹𝑗 ) )
34 7 33 sylib ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑗𝑍 𝑦 ≤ ( 𝐹𝑗 ) )
35 3 4 5 23 34 climinf2lem ( 𝜑𝐹 ⇝ inf ( ran 𝐹 , ℝ* , < ) )