Metamath Proof Explorer


Theorem limsupvaluz

Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluz.m ( 𝜑𝑀 ∈ ℤ )
limsupvaluz.z 𝑍 = ( ℤ𝑀 )
limsupvaluz.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion limsupvaluz ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 limsupvaluz.m ( 𝜑𝑀 ∈ ℤ )
2 limsupvaluz.z 𝑍 = ( ℤ𝑀 )
3 limsupvaluz.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 eqid ( 𝑖 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑖 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
5 2 fvexi 𝑍 ∈ V
6 5 a1i ( 𝜑𝑍 ∈ V )
7 3 6 fexd ( 𝜑𝐹 ∈ V )
8 uzssre ( ℤ𝑀 ) ⊆ ℝ
9 2 8 eqsstri 𝑍 ⊆ ℝ
10 9 a1i ( 𝜑𝑍 ⊆ ℝ )
11 2 uzsup ( 𝑀 ∈ ℤ → sup ( 𝑍 , ℝ* , < ) = +∞ )
12 1 11 syl ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ )
13 4 7 10 12 limsupval2 ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ( ( 𝑖 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) )
14 10 mptima2 ( 𝜑 → ( ( 𝑖 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ran ( 𝑖𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
15 oveq1 ( 𝑖 = 𝑛 → ( 𝑖 [,) +∞ ) = ( 𝑛 [,) +∞ ) )
16 15 imaeq2d ( 𝑖 = 𝑛 → ( 𝐹 “ ( 𝑖 [,) +∞ ) ) = ( 𝐹 “ ( 𝑛 [,) +∞ ) ) )
17 16 ineq1d ( 𝑖 = 𝑛 → ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) )
18 17 supeq1d ( 𝑖 = 𝑛 → sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
19 18 cbvmptv ( 𝑖𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
20 19 a1i ( 𝜑 → ( 𝑖𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
21 fimass ( 𝐹 : 𝑍 ⟶ ℝ* → ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ⊆ ℝ* )
22 3 21 syl ( 𝜑 → ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ⊆ ℝ* )
23 df-ss ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑛 [,) +∞ ) ) )
24 23 biimpi ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ⊆ ℝ* → ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑛 [,) +∞ ) ) )
25 22 24 syl ( 𝜑 → ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑛 [,) +∞ ) ) )
26 25 adantr ( ( 𝜑𝑛𝑍 ) → ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑛 [,) +∞ ) ) )
27 df-ima ( 𝐹 “ ( 𝑛 [,) +∞ ) ) = ran ( 𝐹 ↾ ( 𝑛 [,) +∞ ) )
28 27 a1i ( ( 𝜑𝑛𝑍 ) → ( 𝐹 “ ( 𝑛 [,) +∞ ) ) = ran ( 𝐹 ↾ ( 𝑛 [,) +∞ ) ) )
29 3 freld ( 𝜑 → Rel 𝐹 )
30 resindm ( Rel 𝐹 → ( 𝐹 ↾ ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) ) = ( 𝐹 ↾ ( 𝑛 [,) +∞ ) ) )
31 29 30 syl ( 𝜑 → ( 𝐹 ↾ ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) ) = ( 𝐹 ↾ ( 𝑛 [,) +∞ ) ) )
32 31 adantr ( ( 𝜑𝑛𝑍 ) → ( 𝐹 ↾ ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) ) = ( 𝐹 ↾ ( 𝑛 [,) +∞ ) ) )
33 incom ( ( 𝑛 [,) +∞ ) ∩ 𝑍 ) = ( 𝑍 ∩ ( 𝑛 [,) +∞ ) )
34 2 ineq1i ( 𝑍 ∩ ( 𝑛 [,) +∞ ) ) = ( ( ℤ𝑀 ) ∩ ( 𝑛 [,) +∞ ) )
35 33 34 eqtri ( ( 𝑛 [,) +∞ ) ∩ 𝑍 ) = ( ( ℤ𝑀 ) ∩ ( 𝑛 [,) +∞ ) )
36 35 a1i ( ( 𝜑𝑛𝑍 ) → ( ( 𝑛 [,) +∞ ) ∩ 𝑍 ) = ( ( ℤ𝑀 ) ∩ ( 𝑛 [,) +∞ ) ) )
37 3 fdmd ( 𝜑 → dom 𝐹 = 𝑍 )
38 37 ineq2d ( 𝜑 → ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) = ( ( 𝑛 [,) +∞ ) ∩ 𝑍 ) )
39 38 adantr ( ( 𝜑𝑛𝑍 ) → ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) = ( ( 𝑛 [,) +∞ ) ∩ 𝑍 ) )
40 2 eleq2i ( 𝑛𝑍𝑛 ∈ ( ℤ𝑀 ) )
41 40 biimpi ( 𝑛𝑍𝑛 ∈ ( ℤ𝑀 ) )
42 41 adantl ( ( 𝜑𝑛𝑍 ) → 𝑛 ∈ ( ℤ𝑀 ) )
43 42 uzinico2 ( ( 𝜑𝑛𝑍 ) → ( ℤ𝑛 ) = ( ( ℤ𝑀 ) ∩ ( 𝑛 [,) +∞ ) ) )
44 36 39 43 3eqtr4d ( ( 𝜑𝑛𝑍 ) → ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) = ( ℤ𝑛 ) )
45 44 reseq2d ( ( 𝜑𝑛𝑍 ) → ( 𝐹 ↾ ( ( 𝑛 [,) +∞ ) ∩ dom 𝐹 ) ) = ( 𝐹 ↾ ( ℤ𝑛 ) ) )
46 32 45 eqtr3d ( ( 𝜑𝑛𝑍 ) → ( 𝐹 ↾ ( 𝑛 [,) +∞ ) ) = ( 𝐹 ↾ ( ℤ𝑛 ) ) )
47 46 rneqd ( ( 𝜑𝑛𝑍 ) → ran ( 𝐹 ↾ ( 𝑛 [,) +∞ ) ) = ran ( 𝐹 ↾ ( ℤ𝑛 ) ) )
48 26 28 47 3eqtrd ( ( 𝜑𝑛𝑍 ) → ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) = ran ( 𝐹 ↾ ( ℤ𝑛 ) ) )
49 48 supeq1d ( ( 𝜑𝑛𝑍 ) → sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
50 49 mpteq2dva ( 𝜑 → ( 𝑛𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
51 20 50 eqtrd ( 𝜑 → ( 𝑖𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
52 51 rneqd ( 𝜑 → ran ( 𝑖𝑍 ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
53 14 52 eqtrd ( 𝜑 → ( ( 𝑖 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
54 53 infeq1d ( 𝜑 → inf ( ( ( 𝑖 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑖 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) = inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ* , < ) )
55 fveq2 ( 𝑛 = 𝑘 → ( ℤ𝑛 ) = ( ℤ𝑘 ) )
56 55 reseq2d ( 𝑛 = 𝑘 → ( 𝐹 ↾ ( ℤ𝑛 ) ) = ( 𝐹 ↾ ( ℤ𝑘 ) ) )
57 56 rneqd ( 𝑛 = 𝑘 → ran ( 𝐹 ↾ ( ℤ𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ𝑘 ) ) )
58 57 supeq1d ( 𝑛 = 𝑘 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) )
59 58 cbvmptv ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) = ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) )
60 59 rneqi ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) = ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) )
61 60 infeq1i inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ* , < )
62 61 a1i ( 𝜑 → inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ* , < ) )
63 13 54 62 3eqtrd ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ* , < ) )