| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupvaluz.m |
|
| 2 |
|
limsupvaluz.z |
|
| 3 |
|
limsupvaluz.f |
|
| 4 |
|
eqid |
|
| 5 |
2
|
fvexi |
|
| 6 |
5
|
a1i |
|
| 7 |
3 6
|
fexd |
|
| 8 |
|
uzssre |
|
| 9 |
2 8
|
eqsstri |
|
| 10 |
9
|
a1i |
|
| 11 |
2
|
uzsup |
|
| 12 |
1 11
|
syl |
|
| 13 |
4 7 10 12
|
limsupval2 |
|
| 14 |
10
|
mptimass |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
imaeq2d |
|
| 17 |
16
|
ineq1d |
|
| 18 |
17
|
supeq1d |
|
| 19 |
18
|
cbvmptv |
|
| 20 |
19
|
a1i |
|
| 21 |
|
fimass |
|
| 22 |
3 21
|
syl |
|
| 23 |
|
dfss2 |
|
| 24 |
23
|
biimpi |
|
| 25 |
22 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
|
df-ima |
|
| 28 |
27
|
a1i |
|
| 29 |
3
|
freld |
|
| 30 |
|
resindm |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
|
incom |
|
| 34 |
2
|
ineq1i |
|
| 35 |
33 34
|
eqtri |
|
| 36 |
35
|
a1i |
|
| 37 |
3
|
fdmd |
|
| 38 |
37
|
ineq2d |
|
| 39 |
38
|
adantr |
|
| 40 |
2
|
eleq2i |
|
| 41 |
40
|
biimpi |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
uzinico2 |
|
| 44 |
36 39 43
|
3eqtr4d |
|
| 45 |
44
|
reseq2d |
|
| 46 |
32 45
|
eqtr3d |
|
| 47 |
46
|
rneqd |
|
| 48 |
26 28 47
|
3eqtrd |
|
| 49 |
48
|
supeq1d |
|
| 50 |
49
|
mpteq2dva |
|
| 51 |
20 50
|
eqtrd |
|
| 52 |
51
|
rneqd |
|
| 53 |
14 52
|
eqtrd |
|
| 54 |
53
|
infeq1d |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
reseq2d |
|
| 57 |
56
|
rneqd |
|
| 58 |
57
|
supeq1d |
|
| 59 |
58
|
cbvmptv |
|
| 60 |
59
|
rneqi |
|
| 61 |
60
|
infeq1i |
|
| 62 |
61
|
a1i |
|
| 63 |
13 54 62
|
3eqtrd |
|