Metamath Proof Explorer


Theorem limsupvaluz

Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluz.m φ M
limsupvaluz.z Z = M
limsupvaluz.f φ F : Z *
Assertion limsupvaluz φ lim sup F = sup ran k Z sup ran F k * < * <

Proof

Step Hyp Ref Expression
1 limsupvaluz.m φ M
2 limsupvaluz.z Z = M
3 limsupvaluz.f φ F : Z *
4 eqid i sup F i +∞ * * < = i sup F i +∞ * * <
5 2 fvexi Z V
6 5 a1i φ Z V
7 3 6 fexd φ F V
8 uzssre M
9 2 8 eqsstri Z
10 9 a1i φ Z
11 2 uzsup M sup Z * < = +∞
12 1 11 syl φ sup Z * < = +∞
13 4 7 10 12 limsupval2 φ lim sup F = sup i sup F i +∞ * * < Z * <
14 10 mptima2 φ i sup F i +∞ * * < Z = ran i Z sup F i +∞ * * <
15 oveq1 i = n i +∞ = n +∞
16 15 imaeq2d i = n F i +∞ = F n +∞
17 16 ineq1d i = n F i +∞ * = F n +∞ *
18 17 supeq1d i = n sup F i +∞ * * < = sup F n +∞ * * <
19 18 cbvmptv i Z sup F i +∞ * * < = n Z sup F n +∞ * * <
20 19 a1i φ i Z sup F i +∞ * * < = n Z sup F n +∞ * * <
21 fimass F : Z * F n +∞ *
22 3 21 syl φ F n +∞ *
23 df-ss F n +∞ * F n +∞ * = F n +∞
24 23 biimpi F n +∞ * F n +∞ * = F n +∞
25 22 24 syl φ F n +∞ * = F n +∞
26 25 adantr φ n Z F n +∞ * = F n +∞
27 df-ima F n +∞ = ran F n +∞
28 27 a1i φ n Z F n +∞ = ran F n +∞
29 3 freld φ Rel F
30 resindm Rel F F n +∞ dom F = F n +∞
31 29 30 syl φ F n +∞ dom F = F n +∞
32 31 adantr φ n Z F n +∞ dom F = F n +∞
33 incom n +∞ Z = Z n +∞
34 2 ineq1i Z n +∞ = M n +∞
35 33 34 eqtri n +∞ Z = M n +∞
36 35 a1i φ n Z n +∞ Z = M n +∞
37 3 fdmd φ dom F = Z
38 37 ineq2d φ n +∞ dom F = n +∞ Z
39 38 adantr φ n Z n +∞ dom F = n +∞ Z
40 2 eleq2i n Z n M
41 40 biimpi n Z n M
42 41 adantl φ n Z n M
43 42 uzinico2 φ n Z n = M n +∞
44 36 39 43 3eqtr4d φ n Z n +∞ dom F = n
45 44 reseq2d φ n Z F n +∞ dom F = F n
46 32 45 eqtr3d φ n Z F n +∞ = F n
47 46 rneqd φ n Z ran F n +∞ = ran F n
48 26 28 47 3eqtrd φ n Z F n +∞ * = ran F n
49 48 supeq1d φ n Z sup F n +∞ * * < = sup ran F n * <
50 49 mpteq2dva φ n Z sup F n +∞ * * < = n Z sup ran F n * <
51 20 50 eqtrd φ i Z sup F i +∞ * * < = n Z sup ran F n * <
52 51 rneqd φ ran i Z sup F i +∞ * * < = ran n Z sup ran F n * <
53 14 52 eqtrd φ i sup F i +∞ * * < Z = ran n Z sup ran F n * <
54 53 infeq1d φ sup i sup F i +∞ * * < Z * < = sup ran n Z sup ran F n * < * <
55 fveq2 n = k n = k
56 55 reseq2d n = k F n = F k
57 56 rneqd n = k ran F n = ran F k
58 57 supeq1d n = k sup ran F n * < = sup ran F k * <
59 58 cbvmptv n Z sup ran F n * < = k Z sup ran F k * <
60 59 rneqi ran n Z sup ran F n * < = ran k Z sup ran F k * <
61 60 infeq1i sup ran n Z sup ran F n * < * < = sup ran k Z sup ran F k * < * <
62 61 a1i φ sup ran n Z sup ran F n * < * < = sup ran k Z sup ran F k * < * <
63 13 54 62 3eqtrd φ lim sup F = sup ran k Z sup ran F k * < * <