Step |
Hyp |
Ref |
Expression |
1 |
|
limsupvaluz.m |
|- ( ph -> M e. ZZ ) |
2 |
|
limsupvaluz.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
limsupvaluz.f |
|- ( ph -> F : Z --> RR* ) |
4 |
|
eqid |
|- ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
5 |
2
|
fvexi |
|- Z e. _V |
6 |
5
|
a1i |
|- ( ph -> Z e. _V ) |
7 |
3 6
|
fexd |
|- ( ph -> F e. _V ) |
8 |
|
uzssre |
|- ( ZZ>= ` M ) C_ RR |
9 |
2 8
|
eqsstri |
|- Z C_ RR |
10 |
9
|
a1i |
|- ( ph -> Z C_ RR ) |
11 |
2
|
uzsup |
|- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |
12 |
1 11
|
syl |
|- ( ph -> sup ( Z , RR* , < ) = +oo ) |
13 |
4 7 10 12
|
limsupval2 |
|- ( ph -> ( limsup ` F ) = inf ( ( ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) , RR* , < ) ) |
14 |
10
|
mptima2 |
|- ( ph -> ( ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) = ran ( i e. Z |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
15 |
|
oveq1 |
|- ( i = n -> ( i [,) +oo ) = ( n [,) +oo ) ) |
16 |
15
|
imaeq2d |
|- ( i = n -> ( F " ( i [,) +oo ) ) = ( F " ( n [,) +oo ) ) ) |
17 |
16
|
ineq1d |
|- ( i = n -> ( ( F " ( i [,) +oo ) ) i^i RR* ) = ( ( F " ( n [,) +oo ) ) i^i RR* ) ) |
18 |
17
|
supeq1d |
|- ( i = n -> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
19 |
18
|
cbvmptv |
|- ( i e. Z |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. Z |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
20 |
19
|
a1i |
|- ( ph -> ( i e. Z |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. Z |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
21 |
|
fimass |
|- ( F : Z --> RR* -> ( F " ( n [,) +oo ) ) C_ RR* ) |
22 |
3 21
|
syl |
|- ( ph -> ( F " ( n [,) +oo ) ) C_ RR* ) |
23 |
|
df-ss |
|- ( ( F " ( n [,) +oo ) ) C_ RR* <-> ( ( F " ( n [,) +oo ) ) i^i RR* ) = ( F " ( n [,) +oo ) ) ) |
24 |
23
|
biimpi |
|- ( ( F " ( n [,) +oo ) ) C_ RR* -> ( ( F " ( n [,) +oo ) ) i^i RR* ) = ( F " ( n [,) +oo ) ) ) |
25 |
22 24
|
syl |
|- ( ph -> ( ( F " ( n [,) +oo ) ) i^i RR* ) = ( F " ( n [,) +oo ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ n e. Z ) -> ( ( F " ( n [,) +oo ) ) i^i RR* ) = ( F " ( n [,) +oo ) ) ) |
27 |
|
df-ima |
|- ( F " ( n [,) +oo ) ) = ran ( F |` ( n [,) +oo ) ) |
28 |
27
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( F " ( n [,) +oo ) ) = ran ( F |` ( n [,) +oo ) ) ) |
29 |
3
|
freld |
|- ( ph -> Rel F ) |
30 |
|
resindm |
|- ( Rel F -> ( F |` ( ( n [,) +oo ) i^i dom F ) ) = ( F |` ( n [,) +oo ) ) ) |
31 |
29 30
|
syl |
|- ( ph -> ( F |` ( ( n [,) +oo ) i^i dom F ) ) = ( F |` ( n [,) +oo ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ n e. Z ) -> ( F |` ( ( n [,) +oo ) i^i dom F ) ) = ( F |` ( n [,) +oo ) ) ) |
33 |
|
incom |
|- ( ( n [,) +oo ) i^i Z ) = ( Z i^i ( n [,) +oo ) ) |
34 |
2
|
ineq1i |
|- ( Z i^i ( n [,) +oo ) ) = ( ( ZZ>= ` M ) i^i ( n [,) +oo ) ) |
35 |
33 34
|
eqtri |
|- ( ( n [,) +oo ) i^i Z ) = ( ( ZZ>= ` M ) i^i ( n [,) +oo ) ) |
36 |
35
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( ( n [,) +oo ) i^i Z ) = ( ( ZZ>= ` M ) i^i ( n [,) +oo ) ) ) |
37 |
3
|
fdmd |
|- ( ph -> dom F = Z ) |
38 |
37
|
ineq2d |
|- ( ph -> ( ( n [,) +oo ) i^i dom F ) = ( ( n [,) +oo ) i^i Z ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ n e. Z ) -> ( ( n [,) +oo ) i^i dom F ) = ( ( n [,) +oo ) i^i Z ) ) |
40 |
2
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` M ) ) |
41 |
40
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` M ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) ) |
43 |
42
|
uzinico2 |
|- ( ( ph /\ n e. Z ) -> ( ZZ>= ` n ) = ( ( ZZ>= ` M ) i^i ( n [,) +oo ) ) ) |
44 |
36 39 43
|
3eqtr4d |
|- ( ( ph /\ n e. Z ) -> ( ( n [,) +oo ) i^i dom F ) = ( ZZ>= ` n ) ) |
45 |
44
|
reseq2d |
|- ( ( ph /\ n e. Z ) -> ( F |` ( ( n [,) +oo ) i^i dom F ) ) = ( F |` ( ZZ>= ` n ) ) ) |
46 |
32 45
|
eqtr3d |
|- ( ( ph /\ n e. Z ) -> ( F |` ( n [,) +oo ) ) = ( F |` ( ZZ>= ` n ) ) ) |
47 |
46
|
rneqd |
|- ( ( ph /\ n e. Z ) -> ran ( F |` ( n [,) +oo ) ) = ran ( F |` ( ZZ>= ` n ) ) ) |
48 |
26 28 47
|
3eqtrd |
|- ( ( ph /\ n e. Z ) -> ( ( F " ( n [,) +oo ) ) i^i RR* ) = ran ( F |` ( ZZ>= ` n ) ) ) |
49 |
48
|
supeq1d |
|- ( ( ph /\ n e. Z ) -> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) |
50 |
49
|
mpteq2dva |
|- ( ph -> ( n e. Z |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
51 |
20 50
|
eqtrd |
|- ( ph -> ( i e. Z |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
52 |
51
|
rneqd |
|- ( ph -> ran ( i e. Z |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
53 |
14 52
|
eqtrd |
|- ( ph -> ( ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) = ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) ) |
54 |
53
|
infeq1d |
|- ( ph -> inf ( ( ( i e. RR |-> sup ( ( ( F " ( i [,) +oo ) ) i^i RR* ) , RR* , < ) ) " Z ) , RR* , < ) = inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR* , < ) ) |
55 |
|
fveq2 |
|- ( n = k -> ( ZZ>= ` n ) = ( ZZ>= ` k ) ) |
56 |
55
|
reseq2d |
|- ( n = k -> ( F |` ( ZZ>= ` n ) ) = ( F |` ( ZZ>= ` k ) ) ) |
57 |
56
|
rneqd |
|- ( n = k -> ran ( F |` ( ZZ>= ` n ) ) = ran ( F |` ( ZZ>= ` k ) ) ) |
58 |
57
|
supeq1d |
|- ( n = k -> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) |
59 |
58
|
cbvmptv |
|- ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) = ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) |
60 |
59
|
rneqi |
|- ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) = ran ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) |
61 |
60
|
infeq1i |
|- inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR* , < ) = inf ( ran ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) , RR* , < ) |
62 |
61
|
a1i |
|- ( ph -> inf ( ran ( n e. Z |-> sup ( ran ( F |` ( ZZ>= ` n ) ) , RR* , < ) ) , RR* , < ) = inf ( ran ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) , RR* , < ) ) |
63 |
13 54 62
|
3eqtrd |
|- ( ph -> ( limsup ` F ) = inf ( ran ( k e. Z |-> sup ( ran ( F |` ( ZZ>= ` k ) ) , RR* , < ) ) , RR* , < ) ) |